Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cau 1 . Ta co
A=2^450=(2^3)^150 =8^150
B=3^300=(3^2)^150=9^150
Do 8^150<9^150 => A<B
A= 82 . 324 = (23)2 . (25)4 = 26.220 = 226
\(B=27^3.9^4.81^2\)
\(=\left(3^3\right)^3.\left(3^2\right)^4.\left(3^4\right)^2\)
\(=3^9.3^8.3^8\)
\(=3^{25}\)
A) \(2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=\left(3^2\right)^{100}=9^{100}\)
do \(8^{100}< 9^{100}=>A< B\)
B) \(27^5=\left(3^3\right)^5=3^{15}\)
\(243^3=\left(3^5\right)^3=3^{15}\)
=> \(27^5=243^3\)
2A = 2 + 22 + 23 + ... + 2201
A = 2A - A = 2 + 22 + 23 + ... + 2201 - ( 1 + 2 + 22 + 23 + ... + 2200 )
= 2 + 22 + 23 + ... + 2201 - 1 - 2 - 22 - 23 - ... - 2200 = 2201 - 1
=> A + 1 = 2201 - 1 + 1 = 2201
\(A=1+5+5^2+..+5^{49}+5^{50}\)
\(5A=5+5^2+5^3+...+5^{50}+5^{51}\)
\(5A-A=\left(5+5^2+5^3+...+5^{51}\right)-\left(1+5+5^2+...+5^{50}\right)\)
\(4A=\left(5-5\right)+\left(5^2-5^2\right)+...+\left(5^{50}+5^{50}\right)+5^{51}-1\)
\(4A=0+0+...+0+5^{51}-1\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
câu 3 phần c : (2x+1)3=343 (2x+1)3=73 (2x+1)=7 2x=7-1 2x=6 x=3