Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

câu hỏi này có thể hơi khó đó , mong mọi người sẽ nhanh chóng tìm ra đáp án
là các hoán vị của (2, 3, 6) và (2, 4, 4) là không thỏa mãn điều kiện khác nhau, nên chỉ cònkhông có bộ ba nào.

1 Gọi 2 số lẻ liên tiếp là a;a+2
Ta có 2a+2=1256
=>2a=1254
=> a=627
=> a+2=629
=> 2 số lẻ liên tiếp là 627;629
2.Ta có 19x29=(....1);
39x49=(....1);
..................
1999 tận cùng là 9
=> Tích tận cùng là 9

Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bb và cc.
Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a
Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1
Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)
⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)
Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1.

#)Giải :
Câu 1 :
a)
- Nếu a = 0 => b = 0 hoặc b - c = 0 => b = c hoặc b = c ( đều vô lí ) => a khác 0
- Nếu b = 0 => a = 0 ( vô lí ) => b khác 0
=> c = 0
=> |a| = b2.b = b3
=> b3 ≥ 0
=> b là số nguyên dương
=> a là số nguyên âm
Vậy a là số nguyên dương, b là số nguyên âm và c = 0

Làm hơi dài dòng tẹo nhé
f(0)=d là số lẻ
f(1)=a+b+c+d là số lẻ => a+b+c là số chẵn
Giả sử nghiệm x chẵn => f(x) lẻ khác 0 => loại
Giả sử nghiệm x lẻ
=> Tính chẵn lẻ của ax3 phụ thuộc vào a
Tính chẵn lẻ của bx2 phụ thuộc vào b
Tính chẵn lẻ của cx phụ thuộc vào c
d là số lẻ
Mà a+b+c là số chẵn=> ax3+bx2+cx là số chẵn => ax3+bx2+cx+d là số lẻ khác 0
Vậy f(x) không thể có nghiệm nguyên
Hơi khó hỉu chút nhé ahihi

ấy ấy
toán vui tuần này thì pk để cả tuần chứ sao lại có 10p thôi
lạ quá
không nha vì ba số lẻ cộng với nhau luôn luôn ra số lẻ mà tổng lại bằng 30 là số chẵn nên đáp án là không thể !
Không, không thể chọn ba số nguyên lẻ bất kỳ mà tổng lại bằng 30. Lý do là vì tổng của ba số nguyên lẻ luôn là một số lẻ (lẻ + lẻ = chẵn, chẵn + lẻ = lẻ), và 30 là một số chẵn, do đó không thể bằng tổng của ba số lẻ.