Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x+\frac{2}{3}\right|\)
Ta có: \(\left|x+\frac{2}{3}\right|\ge0\forall x\)
\(A=0\Leftrightarrow\left|x+\frac{2}{3}\right|=0\Leftrightarrow x=-\frac{2}{3}\)
Vậy \(A_{min}=0\Leftrightarrow x=-\frac{2}{3}\)
\(B=\left|x\right|+\frac{1}{2}\)
Ta có: \(\left|x\right|\ge0\forall x\)
\(\Rightarrow\left|x\right|+\frac{1}{2}\ge\frac{1}{2}\forall x\)
\(B=\frac{1}{2}\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\)
Vậy \(B_{min}=\frac{1}{2}\Leftrightarrow x=0\)
Câu c,d tương tự
P/S tất cả những bài trên chỉ tìm được min, ko tìm được max.
a) \(\left|x\right|=2,1\)
x= +- 2,1
b) \(\left|x\right|=\frac{3}{4}\left(x< 0\right)\)
x= -3/4
c) \(\left|x\right|=-1\frac{2}{5}\)
\(x\in\varphi\)
d) \(\left|x\right|=0,35\left(x>0\right)\)
\(x=0,35\)
a) |x| = 2,1 <=> \(\orbr{\begin{cases}x=2,1\\x=-2,1\end{cases}}\)
b) |x| = 3/4 <=> x = - 3/4 ( do x < 0 )
c) ko tim dc x vi |x| >= 0 voi moi x
d) |x| = 0,35 <=> x = 0,35 ( do x>0 )
1) \(P=\frac{2}{6-m}\left(m\ne6\right)\)
Để P có GTLN thì 6-m đạt giá trị nhỏ nhất
=> 6-m=1
=> m=5 (tmđk)
Vậy m=5 thì P đạt giá trị lớn nhất
Vì \(x\ge0\forall x\in R\)
=) \(x+\frac{3}{4}\ge\frac{3}{4}\forall x\in R\)
Dấu "=" xảy ra khi và chỉ khi : \(x+\frac{3}{4}=0\)
\(\Rightarrow x=-\frac{3}{4}\)
Vậy GTNN của \(A=\left|x+\frac{3}{4}\right|\) = 0 khi và chỉ khi \(x=-\frac{3}{4}\)
Ta có : \(\left|2x-\frac{1}{3}\right|\ge0\) với mọi x
\(\Rightarrow\left|2x-\frac{1}{3}\right|+107\ge0+107\)
\(\Rightarrow\left|2x-\frac{1}{3}\right|+107\ge107\)
Vậy GTNN của \(\left|2x-\frac{1}{3}\right|+107\) bằng \(107\) khi :
\(\left|2x-\frac{1}{3}\right|=0\)
\(2x+\frac{1}{3}=0\)
\(2x=0-\frac{1}{3}\)
\(2x=-\frac{1}{3}\)
\(x=-\frac{1}{3}\div2\)
\(x=.......\) (bạn tự tính nha)