Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em coi lại đề bài, \(8\left(x+\dfrac{1}{x}\right)\) hay \(8\left(x+\dfrac{1}{x}\right)^2\) nhỉ?
Câu 1:
=>15(2x+1)-8(3x-1)=100
=>30x+15-24x+8=100
=>6x+23=100
hay x=77/6
Câu 2:
=>2(5x-3)+12-3(7x-1)=x+2
=>10x-6+12-21x+3-x-2=0
=>-12x=-7
hay x=7/12
Câu 3:
\(\Leftrightarrow2\left(x^2-1\right)+3\left(x+1\right)=2\left(x^2-4x+4\right)\)
\(\Leftrightarrow2x^2-2+3x+3-2x^2+8x-8=0\)
=>11x-7=0
hay x=-7/11
Câu 4:
(x - 4)^3/6 + 1 = x(x + 1)/2 - (x - 5)(x + 5)/3
<=> (x - 4)^3 + 6/6 = x^2 + x/2 - x^2 - 25/3
<=> (x - 4)^3 + 6/6 = 3x^2 + 3x - 2x^2 + 50/6
<=> (x - 4)^3 + 6 = 3x^2 + 3x - 2x^2 + 50
<=> x^3 - 12x^2 + 48x - 58 = x^2 + 3x + 50
<=> x^3 -13x^2 + 45x - 108 = 0
Đến đây bạn bấm máy nhẩm nghiệm là ra nhé
Câu 5:
3(x + 2)^3/5 - (x - 1)^2/10 = (x - 3)(x + 3)/2
<=> 6(x + 2)^3 - (x - 1)^2/10 = 5(x^2 - 9)/10
<=> 6(x + 2)^3 - (x - 1)^2 = 5(x^2 - 9)
<=> 6x^3 + 36x^2 + 72x + 48 - x^2 + 2x - 1 - 5x^2 + 45 = 0
<=> 6x^3 + 30x^2 + 74x + 92 = 0
Đến đây bạn bấm máy nhẩm nghiệm như câu 4 nhé
a: ta có: \(\dfrac{\left(x+2\right)^2}{2}+\dfrac{\left(2x+1\right)^2}{4}+\dfrac{\left(2x-1\right)^2}{8}-\left(x+1\right)^2=0\)
\(\Leftrightarrow4\left(x^2+4x+4\right)+2\left(4x^2+4x+1\right)+4x^2-4x+1-8\left(x+1\right)^2=0\)
\(\Leftrightarrow4x^2+16x+16+8x^2+8x+2+4x^2-4x+1-8\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow16x^2+20x+19-8x^2-16x-8=0\)
\(\Leftrightarrow8x^2+4x+11=0\)
\(\text{Δ}=4^2-4\cdot8\cdot11=-336< 0\)
Vì Δ<0 nên phương trình vô nghiệm
b.
PT \(\Leftrightarrow \frac{x^2+2x+1}{2}-\frac{4x^2-4x+1}{3}+\frac{4x^2+4x+1}{4}-\frac{x^2-10x+25}{6}=0\)
\(\Leftrightarrow \left(\frac{x^2+2x+1}{2}+\frac{4x^2+4x+1}{4}\right)-\left(\frac{4x^2-4x+1}{3}+\frac{x^2-10x+25}{6}\right)=0\)
\(\Leftrightarrow \frac{6x^2+8x+3}{4}-\frac{9x^2-18x+27}{6}=0\)
\(\Leftrightarrow \frac{3(6x^2+8x+3)-2(9x^2-18x+27)}{12}=0\)
$\Leftrightarrow 5x-\frac{15}{4}=0$
$\Leftrightarrow x=\frac{3}{4}$
a) \(=x^3-\dfrac{1}{27}-x^2+\dfrac{2}{3}x-\dfrac{1}{9}=x^3-x^2+\dfrac{2}{3}x-\dfrac{2}{27}\)
b) \(=x^6-6x^4+12x^2-8-x^3+x+x^2-3x=x^6-6x^4-x^3+13x^2-2x-8\)
\(\dfrac{3}{x-5}-\dfrac{x+1}{x\left(x-5\right)}\left(dkxd:x\ne0,x\ne5\right)\\ =\dfrac{3x-x-1}{x\left(x-5\right)}=\dfrac{2x-1}{x^2-5x}\)
----------------------------------------
\(\dfrac{8\left(y+2\right)}{3x^2}.\dfrac{15x^5}{4\left(y+2\right)^2}\left(dkxd:x\ne0,y\ne-2\right)\\ =\dfrac{8}{4}.\dfrac{15x^2.x^3}{3x^2}=10x^3\)
------------------------------------------
\(\dfrac{8\left(y-1\right)}{3x^2-3}:\dfrac{4\left(y-1\right)^3}{x^2-2x+1}\left(dkxd:x\ne1,x\ne-1\right)\\ =\dfrac{8\left(y-1\right)}{3\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)^2}{4\left(y-1\right)^3}\\ =\dfrac{2\left(x-1\right)}{3\left(x+1\right)\left(y-1\right)^2}\)
b: \(=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right]\cdot\dfrac{x}{x+1}\)
\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right)\cdot\dfrac{x}{x+1}\)
\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}\cdot\dfrac{x}{x+1}\)
\(=\dfrac{6x^2+6x}{3\left(x+1\right)}\cdot\dfrac{1}{x+1}\)
\(=\dfrac{6x\left(x+1\right)}{3\left(x+1\right)^2}=\dfrac{2x}{x+1}\)
c: \(VT=\left[\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}+\dfrac{1}{\left(x+1\right)^2}\cdot\dfrac{1+x^2}{x^2}\right]\cdot\dfrac{x^3}{x-1}\)
\(=\left(\dfrac{2}{x\left(x+1\right)^2}+\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}\right)\cdot\dfrac{x^3}{x-1}\)
\(=\dfrac{2x+x^2+1}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}\)
\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2}\cdot\dfrac{x}{x-1}=\dfrac{x}{x-1}\)
a: =>1+3x-6=-x+3
=>3x-5=-x+3
=>4x=8
=>x=2(loại)
b: \(\Leftrightarrow\dfrac{3\left(x-3\right)+2\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}=\dfrac{x-1}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\)
=>3x-9+2x-4=x-1
=>5x-13=x-1
=>4x=12
=>x=3(loại)
c: =>x^2-2x+4+x^3+8=12
=>x^3+x^2-2x=0
=>x(x^2+x-2)=0
=>x(x+2)(x-1)=0
=>x=0 hoặc x=1