K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

\(\left\{{}\begin{matrix}\dfrac{3x+1}{6xy^4}\\\dfrac{x^2-5}{4x^2y^3}\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}\dfrac{2x\left(3x+1\right)}{12x^2y^4}\\\dfrac{3y\left(x^2-5\right)}{12x^2y^4}\end{matrix}\right.\)

a) x2 - 7x + 5 = ( x2 - 2 . 7/2 . x + 49 / 4 ) + 5 - 49 / 4 
= (x - 7/2)^2 - 29/4
= (x - 7/2)^2 - (√ 29 / 2 )^2
= ( x - ( 7 + √ 29 / 2 )). ( x + ( 7 - √ 29 / 2 ))

1 tháng 11 2018

mình cần gấp nhé mọi người 13 giờ mk đi học rồi

15 tháng 11 2022

Bài 1:

b: =x^2-10x+x-10

=(x-10)(x+1)

c: \(=2x^2-5x+2x-5=\left(2x-5\right)\left(x+1\right)\)

d: \(=3x^2+5x-3x-5=\left(3x+5\right)\left(x-1\right)\)

e: \(=\left(2x+y\right)^3\)

6 tháng 11 2019

\(C1:=3+1-3y\)

\(=4-3y\)

\(C2:\)

\(a.=3x\left(2y-1\right)\)

\(b.=\left(x-y\right)\left(x+y\right)+4\left(x+y\right)\)

\(=\left(x-y+4\right)\left(x+y\right)\)

\(C3:\)

\(a.6x^2+2x+12x-6x^2=7\)

\(14x=7\)

\(x=\frac{1}{2}\)

\(b.\frac{1}{5}x-2x^2+2x^2+5x=-\frac{13}{2}\)

\(\frac{26}{5}x=-\frac{13}{2}\)

\(x=-\frac{13}{2}\times\frac{5}{26}\)

\(x=-\frac{5}{4}\)

3 tháng 7 2020

Bạn Moon làm kiểu gì vậy ?

1) \(\left(3x^2y^2+x^2y^2\right):\left(x^2y^2\right)-3y\)

\(=\left[\left(x^2y^2\right)\left(3+1\right)\right]:\left(x^2y^2\right)-3y\)

\(=4-3y\)

2) a, \(6xy-3x=\left(3x\right)\left(2y-1\right)\)

b, \(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+4\right)\)

3) a,  \(2x\left(3x+1\right)+\left(4-2x\right)3x=7\)

\(< =>6x^2+2x+12x-6x^2=7\)

\(< =>14x=7< =>x=\frac{7}{14}\)

b, \(\frac{1}{2}x\left(\frac{2}{5}-4x\right)+\left(2x+5\right)x=-6\frac{1}{2}\)

\(< =>\frac{x}{2}.\frac{2}{5}-\frac{x}{2}.4x+2x^2+5x=-\frac{13}{2}\)

\(< =>\frac{x}{5}-2x^2+2x^2+5x=-\frac{13}{2}\)

\(< =>\frac{26x}{5}=\frac{-13}{2}\)

\(< =>26x.2=\left(-13\right).5\)

\(< =>52x=-65< =>x=-\frac{65}{52}=-\frac{5}{4}\)

a) Ta có: \(x^2+4x+3\)

\(=x^2+x+3x+3\)

\(=x\left(x+1\right)+3\left(x+1\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

b) Ta có: \(16x-5x^2-3\)

\(=-5x^2+16x-3\)

\(=-5x^2+15x+x-3\)

\(=-5x\left(x-3\right)+\left(x-3\right)\)

\(=\left(x-3\right)\left(-5x+1\right)\)

c) Ta có: \(2x^2+7x+5\)

\(=2x^2+2x+5x+5\)

\(=2x\left(x+1\right)+5\left(x+1\right)\)

\(=\left(x+1\right)\left(2x+5\right)\)

d) Ta có: \(2x^2+3x-5\)

\(=2x^2+5x-2x-5\)

\(=x\left(2x+5\right)-\left(2x+5\right)\)

\(=\left(2x+5\right)\left(x-1\right)\)

e) Ta có: \(x^3-3x^2+1-3x\)

\(=\left(x+1\right)\cdot\left(x^2-x+1\right)-3x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1-3x\right)\)

\(=\left(x+1\right)\left(x^2-4x+1\right)\)

f) Ta có: \(x^2-4x-5\)

\(=x^2-4x+4-9\)

\(=\left(x-2\right)^2-3^2\)

\(=\left(x-2-3\right)\left(x-2+3\right)\)

\(=\left(x-5\right)\left(x+1\right)\)

g) Ta có: \(\left(a^2+1\right)^2-4a^2\)

\(=\left(a^2+1\right)^2-\left(2a\right)^2\)

\(=\left(a^2+1-2a\right)\left(a^2+1+2a\right)\)

\(=\left(a-1\right)^2\cdot\left(a+1\right)^2\)

h) Ta có: \(x^3-3x^2-4x+12\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-4\right)\)

\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)

i) Ta có: \(x^4+x^3+x+1\)

\(=x^3\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+1\right)\)

\(=\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)

k) Ta có: \(x^4-x^3-x^2+1\)

\(=x^3\left(x-1\right)-\left(x^2-1\right)\)

\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^3-x-1\right)\)

l) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2\)

\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)

\(=3x\left(x+2\right)\)

m) Ta có: \(x^4+4x^2-5\)

\(=x^4-x^2+5x^2-5\)

\(=x^2\left(x^2-1\right)+5\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+5\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)

15 tháng 2 2020

20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)

Vậy...

15 tháng 2 2020
https://i.imgur.com/PCDykdb.jpg