Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi A về đến đích tức là A đi được 1 quãng đường 18km. Khi đó, trong cả quãng đường A đi hơn B là:
1 – 16/18= 1/9 (quãng đường)
B hơn C là:
16/18 – 14/18 = 1/9 (quãng đường).
Vậy trung bình mỗi km B hơn C là:
1/9 : 16 = 1/144 (quãng đường)
Suy ra trung bình mỗi ki-lô-mét B nhanh hơn C:
1/144 x 18 = 0,125 (km)
Khi B đi được 1 km thì C đi được:
1 - 0,125 = 0,875 (km)
Từ lúc B cách đích 2 km cho đến khi B về đến đích thì C đi được:
0,875 x 2 = 1,75 (km)
Vậy khi B về đến đích C còn cách đích là:
4 - 1,75 = 2,25 (km)
Câu hỏi của Nguyễn Anh Tuấn - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Em tham khảo tại đây nhé.
Câu hỏi của Nguyễn Anh Tuấn - Toán lớp 6 - Học toán với OnlineMath
Hiệu vận tốc 2 xe: 50 – 40 = 10 (km/h)
Thời gian xe A đuổi kịp xe C
20 : 10 = 2 (giờ)
Địa điểm K, 2 xe gặp nhau cách A
50 x 2 = 100 (km)
Và cách B: 220 – 100 = 120 (km)
Gọi D là điểm chính giữa KB thì cách K và B là
120 : 2 = 60 (km)
Để điểm D luôn cách đều xe C và B từ lúc này về sau thì phải di chuyển về B với vận tốc
40 : 2 = 20 (km/h)
Thời gian xe A gặp điểm D để cách đều xe C và B
60 : (50 – 20) = 2 (giờ)
Xe A đến điểm D lúc
6 + 2 + 2 = 10 (giờ)
Địa điểm xe A đuổi kịp điểm D để cách đều xe C và B cách K
50 x 2 = 100 (km)
Quãng đường AD (AD=AK+KD)
100 + 100 = 200 (km)
Đáp số: 10 giờ và 200 km
Ủng hộ nha
Giả sử vào lúc 6 giờ có một xe thứ ba đi quãng đường
EB gấp đôi quãng đường AB với vận tốc gấp đôi xe đi từ A.
Vậy thì khoảng cách từ xe thứ ba đến B luôn luôn gấp đôi khoảng cách xe đi từ A đến B.
Như vậy xe đi từ C gặp xe đi từ E lúc nào thì đó cũng là đáp số của bài toán.
Quãng đường xe đi từ C đi trước xe đi từ E:
220 + 20 = 240 (km)
Hiệu vận tốc:
100 – 40 = 60 (km)
Thời gian hai xe đi để gặp nhau:
240 : 60 = 4 (giờ)
Hai xe gặp nhau tại điểm K lúc:
6 + 4 = 10 (giờ)
Cùng thời gian đó, xe đi từ A đến điểm D là:
50 x 4 = 200 (km)
Cách 1: Sử dụng phương pháp giả thiết tạm.
Ta minh họa bài toán như hình vẽ dưới đây:
Giả thiết rằng có một xe thứ ba phải đi quãng đường FE dài gấp đôi quãng đường AC và vận tốc cũng gấp đôi vận tốc xe thứ nhất.
Vậy đoạn đường FE dài : 200 x 2 = 400 (km)
Vận tốc xe thứ ba là: 50 x 2 = 100 (km/h)
Vậy thì trong cũng một khoảng thời gian như xe thứ nhất đi, quãng đường còn lại để tới C của xe thứ ba gấp đôi quãng đường còn lại của xe thứ nhất để tới C.
Vậy thì hai xe thứ hai và thứ ba gặp nhau tại E.
Quãng đường xe thứ ba đi nhiều hơn xe thứ hai là:
200 + 10 = 210 (km)
Hiệu hai vận tốc là:
100 - 40 = 60 (km)
Thời gian để hai xe gặp nhau tại E hay thời gian để khoảng cách đến C của xe thứ hai gấp đôi xe thứ nhất là:
210 : 60 = 3,5 (h)
Vậy khoảng cách đến C của xe thứ hai gấp đôi xe thứ nhất lúc:
7 giờ + 3,5 giờ = 10,5 giờ = 10 giờ 30 phút.
Cách 2:
Trong cùng một khoảng thời gian, quãng đường xe thứ hai đi được bằng 4/5 lần quãng đường xe thứ nhất đi được.
Ta có hình vẽ:
Từ hình vẽ ta có : \(\frac{AB+EM}{BE}=\frac{5-4}{4}=\frac{1}{4}\Rightarrow AB+EM=\frac{1}{4}BE\)
Kẻ thêm đoạn CA' = AB ( = 10km)
Ta có AB + EM = MC + CA' = MA'
Vậy thì \(MA'=\frac{1}{4}BE\)
Lại có AA' = AC + CA' = 200 + 10 = 210 (km)
Vậy nên \(BE=\frac{210}{6}\times4=140\left(km\right)\)
Vậy thời gian để xe thứ hai đi đến E là:
140 : 50 = 3,5 (giờ)
Vậy khoảng cách đến C của xe thứ hai gấp đôi xe thứ nhất lúc:
7 giờ + 3,5 giờ = 10,5 giờ = 10 giờ 30 phút.
hữu hiếu chịch
là sao ???