Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(y+z\right)-y\left(x-z\right)=xy+xz-yx+yz\)
\(=xy-xy+\left(zx+zy\right)\)
\(=\left(x+y\right)z\)
b, \(\left(m-n\right)\left(m+n\right)=m^2+mn-nm-n^2\)
\(=m^2-n^2\)
\(m\left(n-p\right)-n\left(m+p\right)=-p\left(m+n\right)\)
\(vt=mn-mp-nm-np\)
\(=-mp-np\)
\(=-p\left(m+n\right)=vp\)
vâyj đẳng thức được chứng minh
Cho x,y,z,t là các số thực dương thỏa mãn đẳng thức:\(x^2+z^2=y^2+t^2\)
Chứng minh x+y+z+t là hợp số
Lời giải:
Phản chứng. Giả sử $x+y+z+t$ là số nguyên tố. Vì $x,y,z,t$ nguyên dương nên $x+y+z+t\geq 4$. Do đó nó là snt lẻ.
$\Rightarrow x+z$ và $y+t$ phải khác tính chẵn lẻ.
Không mất tính tổng quát, giả sử $x+z$ chẵn và $y+t$ lẻ. Khi đó:
$x^2+z^2=(x+z)^2-2xz$ chẵn
$y^2+t^2=(y+t)^2-2yt$ lẻ
Do đó $x^2+z^2$ không thể bằng $y^2+t^2$ (trái với giả thiết)
Vậy $x+y+z+t$ là hợp số.
hmm...
\(x^2+z^2=y^2+z^2\)
\(\Leftrightarrow x^2+y^2+z^2+t^2=2\left(y^2+z^2\right)\)
Do đó \(x^2+y^2+z^2+t^2⋮2\) (1)
Lại có: \(x^2-x⋮2;y^2-y⋮2;z^2-z⋮2;t^2-t⋮2\)
\(\Rightarrow x^2-x+y^2-y+z^2-z+t^2-t⋮2\)
Hay \(\left(x^2+y^2+z^2+t^2\right)-\left(x+y+z+t\right)⋮2\) (2)
Từ (1) và (2) suy ra \(x+y+z+t⋮2\)
Mà \(x,y,z,t\) đều là các số dương nên \(x+y+z+t>2\) => \(x+y+z+t\) là hợp số.
\(\left(m-n\right)\left(m+n\right)\)
\(\Leftrightarrow\left(m-n\right).m+\left(m-n\right).n\)
\(=m^2-nm+mn-n^2\)
\(=\left(-nm+mn\right)+\left(m^2-n^2\right)\)
\(=0+\left(m^2-n^2\right)\)
\(=m^2-n^2\)