K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(1+2+3+...+99=?\)

Dãy trên có số số hạng là:

\(\left(99-1\right):1+1=99\)(số hạng)

Tổng dãy số trên là:

\(\left(99+1\right).99:2=4950\)

Vậy tổng dãy số trên là 4950.

26 tháng 6 2021

4950 OK

15 tháng 8 2016

số số hạng của dãy số là:(100-1):1+1=100(số hạng)

tổng của dãy số là:(100+1).100:2=5050

15 tháng 8 2016

Số các số hạng của dãy là :

( 100 - 1) : 1 + 1 = 100 ( số hạng )

Tổng là : 

( 100 + 1) : 2 . 100 = 5050 

16 tháng 5 2017

30 tháng 8 2019

\(1+2+...+99\)

\(=\frac{\left(99+1\right).99}{2}\)

\(=\frac{9900}{2}\)

\(=4950\)

30 tháng 8 2019

1 + 2 + ... + 99 = 4950

Học tốt nha

KB vs mik nha

8 tháng 8 2019

\(S=\left(1-2\right)+\left(3-4\right)+...+\left(99-100\right)+101\)

\(=-1.50+101\)

\(=51\)

8 tháng 8 2019

Số số hạng là :

(100−1):1+1=50( số hạng )

Tổng:

1−2+3−4+5−6+...+97−98+99−100+101

=(1−2)+(3−4)+(5−6)+...+(97−98)+(99−100)+101

=(−1)+(−1)+(−1)+...+(−1)+(−1)+101

=(−1)·50+101

=(−50)+101

=51

Tk mình với bạn ơi. Đúng rồi nhé!!

CHÚC BẠN HỌC TỐT ✓✓

20 tháng 8 2017

Chữa bài lâu rồi mà chẳng có ai chả lời chỉ

17 tháng 8 2017
Ai trả lời nhanh nhất, đúng nhất và có câu lời giải thì mình k cho THANK YOU VERY MUCH
26 tháng 8 2017

1)55=4+5+6+7+8+9+10+11

26 tháng 8 2017

1. 55= 1+2+3+...+9+10

2. 1,2,3,...30,31

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

7 tháng 7 2015

a) Ta có dãy số : 11 , 13 ,....,99

Số số hạng là :

( 99 - 11 ) : 2 + 1 = 45 ( số )

Tổng là :

( 99 + 11 ) x 45 : 2 = 2475

b) Ta có dãy số : 10,12,....,50

Số số hạng là :

( 50 - 10 ) : 2 + 1 = 21 ( số )

Tổng là :

( 50 + 10 ) x 21 : 2 = 630

7 tháng 7 2015

1. dãy: 11; 13; ... ; 99

số số hạng: (99-11) :2 +1=45(số)

tổng: (99+11) x 45 : 2=2475

2. dãy: 10;12;...;50

số số hạng: (50-10) :2+1=21(số)

tổng: (50+10) x 21 : 2=630

7 tháng 4 2015

=(100+99-98-97)-(96+95-94-93)+....+(4+3-2-1)

=4+4+...+4

Vi tu 1=>100 co 100 so 

ma moi ngoac co 4 so

=> Co 100:4=25 ngoac

=>4*25=100

15 tháng 9 2017

100-98+96-94+...+4-2.Tính ai giải nhanh và đúng mik k cho