\(\left(a+b\right)\left(b+c\ri...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2020

Dùng BĐT phụ:

\(\left(x+y\right)^2\ge4xy\)

Ta có:\(\left(a+b\right)^2\ge4ab\)

          \(\left(b+c\right)^2\ge4bc\)

           \(\left(c+a\right)^2\ge4ca\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64\left(abc\right)^2\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

 Dấu “=” xảy ra khi a = b = c
 

29 tháng 7 2020

Áp dụng BĐT Cauchy - Schwarz :

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\left(dpcm\right)\)

Vì \(a\ge0\),\(b\ge0\),\(c\ge0\),áp dụng bđt Cauchy cho 3 số dương a,b,c ta có

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ac}\)

Nhân từng vế bđt trên =>đpcm

7 tháng 5 2019

\(\text{có:}\frac{k}{n}+\frac{n}{k}\ge2\Leftrightarrow\frac{k}{n}-2+\frac{n}{k}\ge0\Leftrightarrow\frac{k}{n}-2\sqrt{\frac{k}{n}}.\sqrt{\frac{n}{k}}+\frac{n}{k}\ge0\Leftrightarrow\left(\sqrt{\frac{k}{n}}-\sqrt{\frac{n}{k}}\right)^2\ge0\forall k,n>0\)

\(\left(a+b\right).\left(b+c\right).\left(c+a\right)\ge8abc\)

\(\Leftrightarrow\left(ab+ac+b^2+bc\right).\left(a+c\right)\ge8abc\)

\(\Leftrightarrow a^2b+a^2c+ab^2+abc+abc+ac^2+b^2c+bc^2\ge8abc\)

\(\Leftrightarrow2+\frac{a}{c}+\frac{a}{b}+\frac{b}{c}+\frac{c}{b}+\frac{b}{a}+\frac{c}{a}\ge8\)

\(\Leftrightarrow2+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)\ge8\)(luôn đúng với mọi a,b,c >=0)

30 tháng 7 2020

Đặt a2 = x; b2 = y; c2 = z

Khi đó, ta có: (x + y)(y + z)(z + x) \(\ge\)xyz

<=> (xy + xz + y2 + yz)(z + x) - 8xyz \(\ge\)0

<=> xyz + xz2 + y2z + yz2 + x2y + x2z + y2x + xyz - 8xyz \(\ge\)0

<=> (xz2 +xy2) + (y2z + zx2) + (yz2 + yx2) - 6xyz \(\ge\)0

<=> (xz2 - 2xyz + xy2) + (y2z + zx- 2xyz) + (yz+ yx2 - 2xyz) \(\ge\)0

<=> x(z2 - 2yz + y2) + z(y2 + x2 - 2xy) + y(z2 + x2 - 2xz) \(\ge\) 0

<=> x(z - y)2 + z(y - x)2 + y(z - x)2 \(\ge\)0

hay a2(c2 - b2)2 + c2(b2 - a2)2 + b2(c2 - a2)2 \(\ge\)0 (luôn đúng với mọi a;b;c)

=> Đpcm

30 tháng 7 2020

Đặt \(a^2;b^2;c^2\rightarrow x;y;z\left(x;y;z\ge0\right)\)

Khi đó bài toán trở thành \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)

\(< =>\left(x+y\right)\left(y+z\right)\left(z+x\right)-8xyz\ge0\)

\(< =>a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\)*đúng*

Dấu "=" xảy ra khi và chỉ khi \(x=y=z\)hay \(a^2=b^2=c^2\)

17 tháng 8 2016

Vì a,b,c không phải là số âm \(\Rightarrow a,b,c\ge0\)

Ta có 2 TH:

TH 1: a,b,c=0

Nếu a,b,c = 0 => a(a+b)(a+c)(a+b+c)=0

=> a(a+b)(a+c)(a+b+c)=0

TH 2:  a,b,c >0

=> a(a+b) >0 => a(a+b)(a+c)  >0

=> a(a+b)(a+c)(a+b+c) >0

Vậy  a,b,c là các số không âm => a(a+b)(a+c)(a+b+c) \(\ge0\)

17 tháng 8 2016

Đầu tiên , cần chứng minh \(x^2+xy+y^2\ge0\) với mọi x,y thuộc tập số thực.

Thật vậy , đặt \(A=x^2+y^2+xy\Rightarrow2A=\left(x+y\right)^2+x^2+y^2\Rightarrow A\ge0\)

Ta có : \(a\left(a+b\right)\left(a+c\right)\left(a+b+c\right)+b^2c^2=\left(a^2+ab+ac\right)\left(a^2+ab+ac+bc\right)+b^2c^2\)

Đặt \(x=a^2+ab+ac\) , \(y=bc\) , suy ra : 

\(x\left(x+y\right)+y^2\ge0\Leftrightarrow x^2+xy+y^2\ge0\)luôn đúng.

Vậy bđt ban đầu dc chứng minh

Nhiếu cách chứng minh cho BĐT AM-GM (3 số dương).Cho a, b, c là các số thực dương. Chứng minh rằng \(a^3+b^3+c^3\ge3abc\)Chắc hẳn mỗi người chúng ta đều biết đến cách c/m: "\(VT-VP=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\). Chắc chắn đây là cách chứng minh thông minh nhất, bởi tính sơ cấp của nó. Vậy liệu bạn còn tìm được cách chứng minh nào nữa...
Đọc tiếp

Nhiếu cách chứng minh cho BĐT AM-GM (3 số dương).

Cho a, b, c là các số thực dương. Chứng minh rằng \(a^3+b^3+c^3\ge3abc\)

Chắc hẳn mỗi người chúng ta đều biết đến cách c/m: "\(VT-VP=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\). Chắc chắn đây là cách chứng minh thông minh nhất, bởi tính sơ cấp của nó. Vậy liệu bạn còn tìm được cách chứng minh nào nữa không? (đừng bảo mình là áp dụng bđt AM-GM cho 3 số nhé! Vì ta đang chứng minh nó mà:)) 

Cập nhật: Đây là 1 cách mình vừa tìm ra:(dù ko chắc nhưng vẫn đăng để mọi người tìm lỗi cho mình:v)

Không mất tính tổng quát giả sử \(c=min\left\{a,b,c\right\}\).Ta có:

\(VT-VP=\frac{1}{3}\left(a+2b+3c\right)\left(a-b\right)^2+\frac{1}{3}\left(b+2c\right)\left(b-c\right)^2+\frac{1}{3}\left(c+2a\right)\left(c-a\right)^2+b\left(a-c\right)\left(b-c\right)\ge0\)

---------------------------------------------Bài viết vẫn còn tiếp tục cập nhật-------------------------------------------

 

0
12 tháng 4 2018

a) Áp dụng Cauchy-Schwarz:

\(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)=2\left(a^2+b^2\right)\)

b) Áp dụng AM-GM:

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\a^2+c^2\ge2ac\end{matrix}\right.\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2ab+2bc+2ac\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(a^2+b^2+c^2\ge ab+bc+ac\) (cm ở trên r nên khỏi cm lại đi)

\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge3\left(ab+bc+ac\right)\)

\(\Rightarrow3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2\)

Kết hợp 2 điều trên:\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

12 tháng 4 2018

a)2(a2+b2) ≥ (a+b)2

⇔ 2a2+2b2 ≥ a2+2ab+b2

xét hiệu

⇔ 2a2+2b2-a2-2ab-b2 ≥ 0

⇔ a2-2ab+b2 ≥ 0

⇔ (a-b)2 ≥ 0 (luôn đúng )

=> đpcm

a,b,c khong am nen (ab+bc+ca)...>=9/4 co the dung don bien nhe ban

con cau tra loi thi khong bit

10 tháng 8 2019

nguyễn xuân trợ: bớt xàm đi bạn, cái bạn hỏi đã bảo chúng ta dùng phương pháp dồn biến rồi nha!

23 tháng 7 2019

a. \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)

\(\Leftrightarrow2a^2+2b^2=a^2+b^2-2ab\)

\(\Leftrightarrow a^2+b^2=-2ab\)

\(\Leftrightarrow a^2+2ab+b^2=0\)

\(\Leftrightarrow\left(a+b\right)^2=0\)

\(\Leftrightarrow a+b=0\Leftrightarrow a=-b\) (đpcm)

b. \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

\(\left(a-1\right)^2;\left(b-1\right)^2;\left(c-1\right)^2\ge0\)

\(\Rightarrow\left(a-1\right)^2=\left(b-1\right)^2=\left(c-1\right)^2=0\)

\(\Leftrightarrow a-1=b-1=c-1=0\Leftrightarrow a=b=c=1\)

c. \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tương tự câu b ta có a = b = c

27 tháng 1 2020

Sử dụng trường hợp riêng của BĐT Schur. Với a,b,c là các sooa thực ko âm và k>0 ta luôn có :

\(a^k\left(a-b\right)\left(a-c\right)+b^k\left(b-c\right)\left(b-a\right)+c^k\left(c-a\right)\left(c-b\right)\ge0\)

27 tháng 1 2020

Anh tth_new ơi,mẹ em bắt em dirichlet ạ :( Mẹ em còn chỉ em bài toán tổng quát là:

Cho a,b,c dương,CMR:\(m\left(a^2+b^2+c^2\right)+abc+3m+2\ge\left(2m+1\right)\left(a+b+c\right)\)

\(BĐT\Leftrightarrow2\left(a^2+b^2+c^2\right)+abc+8\ge5\left(a+b+c\right)\)

 Thôi,đi vào giải quyết bài toán.

Trong 3 số \(a-1;b-1;c-1\) có ít nhất 2 số cùng dấu,giả sử đó là \(a-1;b-1\)

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Rightarrow ab-a-b+1\ge0\Rightarrow abc\ge ac+bc-c\)

Khi đó BĐT tương đương với:

\(2\left(a^2+b^2+c^2\right)+abc+8\ge2\left(a^2+b^2+c^2\right)+ac+bc-c+8\)

Ta cần chứng minh:

\(2\left(a^2+b^2+c^2\right)+ac+bc-c+8\ge5\left(a+b+c\right)\)

\(\Leftrightarrow\left(b+c-2\right)^2+\left(c+a-2\right)^2+3\left(a-1\right)^2+3\left(b-1\right)^2+2\left(c-1\right)^2\ge0\) 

Hình như cái BĐT cuối đúng thì phải ạ.

Dấu "=" xảy ra tại a=b=c=1

16 tháng 2 2020

a) Ta có: \(a^2+1\ge2a\)

Tường tự \(b^2+1\ge2b\)\(c^2+1\ge2c\)

Vì \(a^2+1\ge0\);\(b^2+1\ge0\);\(c^2+1\ge0\)nên ta:

Nhân vế theo vế của 3 bất đẳng thức cùng chiều ta được điều phải chứng minh

b) \(a^2+2^2\ge4a\)bạn làm tương tự như câu a) là ra nha!