Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1.2 + 2.3 + 3.4 + ... + 38.39 + 39.40
3S = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 38.39.(40 - 37) + 39.40.(41 - 38)
3S = 1.2.3 - 0.1.2 + 3.4.5 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 38.39.40 - 37.38.39 + 39.40.41 - 38.39.40
3S = (1.2.3 + 2.3.4 + 3.4.5 + .... + 38.39.40 + 39.40.41) - (0.1.2 + 1.2.3 + 2.3.4 + .... + 37.38.39 + 38.39.40)
3S = 39.40.41 - 0.1.2
3S = 39.40.41
S = 39.40.41 : 3
S = 21320
S=1.2+2.3+3.4+...+38.39+39.40
<=>3S= 1.2.3 +2.3.3+ 3.4.3 +...+ 38.39.3 + 39.40.3
<=>3S= 1.2.3 + 2.3.(4-1) + 3.4.(5-2) +...+ 38.39.(40-37)+ 39.40.(41-38)
<=>3S= 1.2.3 + 2.3.4- 1.2.3 + 3.4.5 - 2.3.4 + ... + 38.39.40 - 37.38.39 + 39.40.41 - 38.39.40
<=> 3S=39.40.41
<=> S= \(\dfrac{39.40.41}{3}\)
<=>S=21320
\(S=1.2+2.3+3.4+...+38.39+39.40\)
\(\Rightarrow3S=1.2.3+2.3.3+3.4.3+...+38.39.3+39.40.3\)
\(\Rightarrow3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+38.39.\left(40-37\right)+39.40.\left(41-38\right)\)
\(\Rightarrow3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+39.40.41-38.39.40\)
\(\Rightarrow3S=39.40.41\)
\(\Rightarrow3S=63960\)
\(\Rightarrow S=63960\div3=21320\)
Vậy S = 21320
S = 1.2 + 2.3 + 3.4 + ... + 38.39 + 39.40
3S = 1.2.(3-0) + 2.3.(4-1) + 3.4.(5-2) + ... + 38.39.(40-37) + 39.40.(41-38)
3S = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 39.39.40 - 37.38.39 + 39.40.41 - 38.39.40
3S = 39.40.41
S = 13.40.41
S = 21320
\(S=1x2+2x3+3x4+...+39x40\)
\(\Rightarrow3S=1x2\left(3-0\right)2x3\left(4-1\right)+...+39x40\left(41-38\right)\)
\(\Rightarrow3S=1x2x3-0x1x2+2x3x4-1x2x3+...+39x40x41-38x39x40\)
\(\Rightarrow S=\frac{38x39x40}{3}\)
\(\Rightarrow S=21320\)
\(S=1.2+2.3+3.4+...+38.39+39.40\)
\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+38.39.\left(40-37\right)+39.40.\left(41-38\right)\)
\(3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+38.39.40-37.38.39+39.40.41-38.39.40\)
\(3S=39.40.41\)
\(S=\frac{63960}{3}=21320\)
. là nhân
\(S=1\cdot2+2\cdot3+3\cdot4+...+39\cdot40\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+39\cdot40\cdot\left(41-38\right)\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+39\cdot40\cdot41-38\cdot39\cdot40\)
\(3S=39\cdot40\cdot41\)\(\Rightarrow S=\dfrac{39\cdot40\cdot41}{3}=21320\)
Ta có : \(S=1.2+2.3+3.4+...+38.39+39.40\)
\(3S=1.2.3+2.3.3+3.4.3+...+38.39.3+39.40.3\)
\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+39.40.\left(41-38\right)\) \(3S=39.40.41\)
\(S=\dfrac{39.40.41}{3}\)\(=21320\)
Ta có
\(S=1.2+2.3+....+39.40\)
\(\Rightarrow3S=1.2\left(3-0\right)+2.3\left(4-1\right)+....+39.40\left(41-38\right)\)
\(\Rightarrow3S=1.2.3-0.1.2+2.3.4-1.2.3+....+39.40.41-38.39.40\)
\(\Rightarrow S=\frac{39.40.41}{3}\)
=> S-21320
Vaayj S=21320
Ta có
\(S=1.2+2.3+3.4+...+39.40\)
\(\Rightarrow3S=1.2.3+2.3.3+3.4.3+...+39.40.3\)
\(\Rightarrow3S=1.2.\left(3-0\right)+2.3.\left(4-2\right)+3.4.\left(5-2\right)+...+39.40.\left(41-38\right)\)
\(\Rightarrow3S=1.2.3-0.1.2+2.3.4-1.2.3+......+39.40.41-38.39.40\)
\(\Rightarrow3S=38.39.40\)
\(\Rightarrow S=\frac{38.39.40}{3}\)
\(\Rightarrow S=19760\)
Vậy S=19760