\((x^2-9).\sqrt{2-x}=x(x^2-9)\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2018

8)a) \(\left(x^2-9\right)\sqrt{2-x}=x\left(x^2-9\right)\)

\(\Leftrightarrow\left(x^2-9\right)\sqrt{2-x}-x\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x^2-9\right)\left(\sqrt{2-x}-x\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x\le2\\\left[{}\begin{matrix}x=\pm3\\\left\{{}\begin{matrix}x>0\\x^2+x-2=0\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le2\\\left[{}\begin{matrix}x=\pm3\\\left\{{}\begin{matrix}x\ge0\\\left(x-1\right)\left(x+2\right)=0\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x=-3\) hoặc x=1

Vậy nghiệm của pt là:...

16 tháng 6 2018

Giúp em các bài đăng đi ạ.

Câu 4: 

\(\text{Δ}=\left(2m-4\right)^2-4\left(m^2-3m+3\right)\)

\(=4m^2-16m+16-4m^2+12m-12\)

\(=-4m+4\)

Để phươg trình có hai nghiệm thì -4m+4>=0

hay m<=1

Theo đề, ta có: 

\(3x_1x_2-\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5=0\)

\(\Leftrightarrow3\left(m^2-3m+3\right)-\left[\left(2m-4\right)^2-2\left(m^2-3m+3\right)\right]-5=0\)

\(\Leftrightarrow3m^2-9m+9-4m^2+16m-16+2m^2-6m+6-5=0\)

\(\Leftrightarrow m^2+m-6=0\)

=>(m+3)(m-2)=0

=>m=2(loại) hoặc m=-3(nhận)

Bài 1: Giải các phương trình, hệ phương trình sau: a) \((3x+1)(4x+1)(6x+1)(12x+1)=2\) b) \(\begin{cases} x(x+\dfrac{4}{y})+\dfrac{1}{y^2}=2 \\ x(2+\dfrac{1}{y})+\dfrac{2}{y}=3 \end{cases}\) c) \((x^2-9)\sqrt{2-x}=x(x^2-9)\) d) \(\begin{cases} (x^2+4y^2)^2-4(x^2+4y^2)=5\\ 3x^2+2y^2=5 \end{cases}\) e) \(\sqrt{2x-1}+\sqrt{1-2x^2}=2 \sqrt{x-x^2}\) f) \(\dfrac{9}{x^2}+\dfrac{2x}{\sqrt{2x^2+9}}-1=0\) Bài 2: a) Tìm nghiệm nguyên của phương trình:...
Đọc tiếp

Bài 1: Giải các phương trình, hệ phương trình sau:

a) \((3x+1)(4x+1)(6x+1)(12x+1)=2\)

b) \(\begin{cases} x(x+\dfrac{4}{y})+\dfrac{1}{y^2}=2 \\ x(2+\dfrac{1}{y})+\dfrac{2}{y}=3 \end{cases}\)

c) \((x^2-9)\sqrt{2-x}=x(x^2-9)\)

d) \(\begin{cases} (x^2+4y^2)^2-4(x^2+4y^2)=5\\ 3x^2+2y^2=5 \end{cases}\)

e) \(\sqrt{2x-1}+\sqrt{1-2x^2}=2 \sqrt{x-x^2}\)

f) \(\dfrac{9}{x^2}+\dfrac{2x}{\sqrt{2x^2+9}}-1=0\)

Bài 2: a) Tìm nghiệm nguyên của phương trình: \(3x^2-2y^2-5xy+x-2y-7=0\)

b) Cho các số thực a, b thỏa mãn căn bậc \(\sqrt[3]{a}+\sqrt[3]{b} =\sqrt[3]{b-\dfrac{1}{4}}\). CMR: \(-1< a <0\)

c) Tìm số nguyên a, b, c thỏa: \(a+b+c=0\), \(ab+bc+ca=3\)

d) Với k là số nguyên dương, chứng minh rằng không tồn tại các số nguyên a,b,c khác 0 sao cho \(a+b+c=0\), \(ab+bc+ca+2^k=0 \)

Bài 3: Cho tứ giác ABCD nội tiếp đường tròn tâm O. Đường thẳng vuông góc với AD tại A cắt BC tại E. Đường thẳng vuông góc với AB tại A cắt CD tại F. Chứng minh: O, E, F thẳng hàng.

Bài 4: Cho hình thang ABCD vuông tại A và B, M là trung điểm AB. Đường thẳng qua A vuông góc với MD cắt đường thẳng qua B vuông góc với MC tại N. Chứng minh rằng: MN vuông góc CD.

12
5 tháng 6 2018

Câu 1a thì được nè :v

( 3x + 1)( 4x + 1)( 6x + 1)( 12x + 1) = 2

⇔ 4( 3x + 1)3( 4x + 1)2( 6x + 1)( 12x + 1) = 2.4.3.2

⇔ ( 12x + 4)( 12x + 3)( 12x + 2)( 12x + 1) =48 ( 1)

Đặt : 12x + 1 = a , ta có :

( 1) ⇔ a( a+ 1)( a + 2)( a + 3) = 48

⇔ ( a2 + 3a)( a2 + 3a +2) = 48

Đặt : a3 + 3a = t , ta có :

t( t +2) =48

⇔ t2 + 2t - 48 = 0

⇔ t2 - 6t + 8t - 48 = 0

⇔ t( t - 6) + 8( t - 6) = 0

⇔ ( t - 6)( t + 8) = 0

⇔ t = 6 hoặc t = -8

Tự thế vào mà tìm a sau đó suy ra x nha

AH
Akai Haruma
Giáo viên
6 tháng 6 2018

Bài 1:

b)

HPT \(\left\{\begin{matrix} x^2+\frac{1}{y^2}+\frac{4x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \left(x+\frac{1}{y}\right)^2+\frac{2x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)

Lấy PT(1) trừ 2PT(2) thu được:

\(\left(x+\frac{1}{y}\right)^2-4\left(x+\frac{1}{y}\right)=-4\)

\(\Leftrightarrow \left(x+\frac{1}{y}-2\right)^2=0\Rightarrow x+\frac{1}{y}=2\)

Thay vào thu được \(\frac{x}{y}=-1\)

Theo định lý Viete đảo thì \((x,\frac{1}{y})\) là nghiệm của PT:

\(X^2-2X-1=0\)

\(\Rightarrow (x,\frac{1}{y})=(1+\sqrt{2}; 1-\sqrt{2})\) hoặc \((1-\sqrt{2}; 1+\sqrt{2})\)

Tức là: \((x,y)=(1+\sqrt{2}, -1-\sqrt{2}); (1-\sqrt{2}; -1+\sqrt{2})\)

Bài 1​: Với mọi số x, y. Chứng minh rằng: a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \) b) \(x^2+5y^2-4xy+2x-6y+3>0\) Bài 2: Với mọi số thực x, a. Chứng minh rằng: \(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\) Bài 3: Cho \(a, b, c, d \in R\) và \(b< c < d\). Chứng minh rằng: a) \((a+b+c+d)^2>8(ac+bc)\) b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\) Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\)....
Đọc tiếp

Bài 1​: Với mọi số x, y. Chứng minh rằng:

a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \)
b) \(x^2+5y^2-4xy+2x-6y+3>0\)

Bài 2: Với mọi số thực x, a. Chứng minh rằng:

\(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\)

Bài 3: Cho \(a, b, c, d \in R\)\(b< c < d\). Chứng minh rằng:

a) \((a+b+c+d)^2>8(ac+bc)\)
b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\)

Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\). CMR:

\((p^2-a^2-b^2)(q^2-c^2-d^2)\le(pq-ac-bd)^2\)

Bài 5: \((a_1b_1+a_2b_2)^2\le(a_1^2+a_2^2)(b_1^2+b_2^2)\) dấu bằng xảy ra khi nào?

Bài 6: Cho a>0. Chứng minh rằng:

\(\sqrt{a+\sqrt{a+....+\sqrt{a}}}<\dfrac{1+\sqrt{1+4a}}{2}\)

Bài 7: \(y=\dfrac{x+1}{x^2+x+1}\). Tìm cực trị của y.

Bài 8: Cho \(0\le x, \) \(y\le1 \)\(x+y=3xy\). CMR: \(\dfrac{3}{9}\le \dfrac{1}{4(x+y)}\le \dfrac{3}{8}\)

Bài 9: Cho \(0\le x, \)\(y\le1 \). CMR: \((2^x+2^y)(2^{-x}+2^{-y})\ge \dfrac{9}{2}\)

Bài 10: Ba số thực a, b, c thỏa: \(a^2+b^2+c^2=2\), \(ab+bc+ca=1\) CMR: \(a,b,c \in [\dfrac{3}{4},\dfrac{4}{3}]\)

1
4 tháng 6 2018

@Phùng Khánh Linh

@Aki Tsuki

@Nhã Doanh

@Akai Haruma

@Nguyễn Khang

NV
5 tháng 6 2019

ĐKXĐ:...

\(M=\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)

\(N=\frac{x\sqrt{x}-\sqrt{x}+2x-2}{\sqrt{x}+2}=\frac{\sqrt{x}\left(x-1\right)+2\left(x-1\right)}{\sqrt{x}+2}=\frac{\left(\sqrt{x}+2\right)\left(x-1\right)}{\sqrt{x}+2}=x-1\)

Để \(M=N\Leftrightarrow x-1=2\sqrt{x}+1\)

\(\Leftrightarrow x-2\sqrt{x}-2=0\Rightarrow\left[{}\begin{matrix}\sqrt{x}=\sqrt{3}+1\\\sqrt{x}=1-\sqrt{3}< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=\left(\sqrt{3}+1\right)^2=4+2\sqrt{3}\)

30 tháng 3 2019

P = \(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{2+5\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)

P =....

P = \(\frac{\sqrt{x}}{\sqrt{x}+1}\)

xin lỗi nhầm đề

1: \(P=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{x-4}\)

\(=\dfrac{3x-6\sqrt{x}}{x-4}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

2: Để P>2/3 thì P-2/3>0

=>\(\dfrac{3\sqrt{x}}{\sqrt{x}+2}-\dfrac{2}{3}>0\)

=>9 căn x-2 căn x-4>0

=>7 căn x>4

=>x>16/49

3: Để P là số nguyên thì \(3\sqrt{x}+6-6⋮\sqrt{x}+2\)

\(\Leftrightarrow\sqrt{x}+2\in\left\{2;3;6\right\}\)

hay \(x\in\left\{0;1;16\right\}\)

11 tháng 6 2018

@Hắc Hường