Câu 8. Chọn đáp án đúng
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.a/Chứng minh: tam giác ABM = tam giác ACM.b/ Chứng minh: AM là đường trung trực của đoạn thẳng BC.c/ Chứng minh: AM là tia phân giác của góc BAC.Bài 2: Cho tam giác ABC. Vẽ cung tròn tâm A bán kính BC, vẽ cung tròn tâm C bán kính AB, chúng cắt nhau tại D (D và B nằm khác phía đối với AC). Chứng minh AD // BC. Bài 3: Cho tam giác ABC (AB < AC). Trên tia AB...
Đọc tiếp

Bài 1: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.

a/Chứng minh: tam giác ABM = tam giác ACM.

b/ Chứng minh: AM là đường trung trực của đoạn thẳng BC.

c/ Chứng minh: AM là tia phân giác của góc BAC.

Bài 2: Cho tam giác ABC. Vẽ cung tròn tâm A bán kính BC, vẽ cung tròn tâm C bán kính AB, chúng cắt nhau tại D (D và B nằm khác phía đối với AC). Chứng minh AD // BC. 

Bài 3: Cho tam giác ABC (AB < AC). Trên tia AB lấy điểm D sao cho AD = AC. E là trung điểm của DC. Từ B vẽ BK vuông góc với CD. Chứng minh: AE // BK.

Bài 4: Cho góc nhọn xOy, Trên tia Ox, Oy lấy tương ứng hai điểm A và B sao cho OA = OB. Vẽ đường tròn tâm A và tâm B có cùng bán kính sao cho chúng cắt nhau tại hai điểm M, N nằm trong góc xOy. Chứng minh:

a/ tam giác OMA = tam giác OMB và tam giác ONA = tam giác ONB.

b/ 3 điểm O, M, N thẳng hàng.

c/ tam giác AMN = tam giác BMN. 

d/ MN là tia phân giác của góc AMB.

Bài 5: Cho tam giác ABC có AB = AC. Gọi D, E là 2 điểm trên cạnh BC sao cho BD = DE = EC. Biết AD = AE.

a/ Chứng minh: ÄABE = ÄACD.

b/ Gọi M là trung điểm của BC. Chứng minh rằng AM là tia phân giác của góc DAE.

c/ Giả sử góc DAE bằng 600, tính các góc còn lại của tam giác ADE.

d/ Chứng minh: AM vuông góc với BC.

Bài 6: Cho tam giác ABC. Vẽ đoạn thẳng AD vuông góc với AB (D và C nằm khác phía đối với AB) sao cho AD = AB. Vẽ đoạn thẳng AE vuông góc với AC (E và B nằm khác phía đối với AC) sao cho AE = AC. Biết DE = BC. Tính góc BAC.

Bài 7: Cho đoạn thẳng AB, điểm C cách đều hai điểm A và B, điểm D cách đều hai điểm A và B (C và D nằm khác phía đối với AB).

a/ Chứng minh: CD là tia phân giác của góc ACD.

b/ Kết quả câu a còn đúng không nếu C và D nằm cùng phía đối với AB?

chỉ cách giải các bài trên nhé, nhớ là KHÔNG chỉ đáp án nhé

p/s: có thể một số chỗ bị sai, mong những ai trả lời thông cảm

0
7 tháng 2 2022

a) Ta có: OC=OA+AC

OD=OB+BD

Mà OA=OB và AC=BD (gt)

=>OC=OD

Xét Δ OAD và Δ OBC có:

OA=OB (gt)

ˆOO^ góc chung

OC=OD (cmt)

=> Δ OAD=Δ OBC (c.g.c)

=> AD=BC (2 cạnh tương ứng)

Δ OAD=Δ OBC (cmt)

=> ˆD=ˆCD^=C^ và ˆA1=ˆB1A1^=B1^ (2 góc tương ứng)

Mà ˆA1+ˆA2=ˆB1+ˆB2A1^+A2^=B1^+B2^= 180(kề bù)

=> ˆA2=ˆB2A2^=B2^

Δ EAC và Δ EBD có:

ˆC=ˆDC^=D^ (cmt)

AC=BD (gt)

ˆA2=ˆB2A2^=B2^ (cmt)

=> Δ EAC= ΔEBD (g.c.g)

c) Δ EAC=ΔEBD (cmt)

=> EA=EB (2 cạnh tương ứng)

ΔOBE và Δ OAE có:

OB=OA (gt)

ˆB1=ˆA1B1^=A1^ (cmt)

EA=EB (cmt)

=>Δ OBE=Δ OAE (c.g.c)

=> ˆO1=ˆO2O1^=O2^ (2 góc tương ứng)

Vậy OE là phân giác ˆxO

3 tháng 9

Phân tích bài toán


  • Đề bài cho:
    • Góc nhọn xOy
    • Điểm A thuộc Ox, điểm B thuộc Oy, OA = OB
    • Điểm C thuộc tia Ax, điểm D thuộc tia By, AC = BD
  • Yêu cầu:
    • Chứng minh AD = BC
    • Chứng minh △EAC = △EBD (với E là giao điểm của AD và BC)
    • Chứng minh OE là phân giác góc xOy


a. Chứng minh AD = BC


Xét △OAD và △OBC, ta có:

  • OA = OB (giả thiết)
  • ∠xOy chung
  • OD = OB + BD
  • OC = OA + AC

Vì OA = OB và AC = BD nên OA + AC = OB + BD, suy ra OC = OD.

Vậy, △OAD = △OBC (c.g.c). Suy ra, AD = BC (hai cạnh tương ứng).



b. Chứng minh △EAC = △EBD


Xét △OAD = △OBC (chứng minh trên), suy ra:

  • ∠OAD = ∠OBC
  • ∠ODA = ∠OCB

Ta có:

  • ∠EAC = 180° - ∠OAD
  • ∠EBD = 180° - ∠OBC

Vì ∠OAD = ∠OBC nên ∠EAC = ∠EBD.

Xét △EAC và △EBD, ta có:

  • ∠EAC = ∠EBD (chứng minh trên)
  • AC = BD (giả thiết)
  • ∠ACE = 180° - ∠OCB
  • ∠BDE = 180° - ∠ODA

Vì ∠OCB = ∠ODA nên ∠ACE = ∠BDE.

Vậy, △EAC = △EBD (g.c.g).



c. Chứng minh OE là phân giác góc xOy


Xét △OAE và △OBE, ta có:

  • OA = OB (giả thiết)
  • OE là cạnh chung

Từ △EAC = △EBD (chứng minh trên), suy ra AE = BE (hai cạnh tương ứng).

Vậy, △OAE = △OBE (c.c.c). Suy ra, ∠AOE = ∠BOE (hai góc tương ứng).

Do đó, OE là tia phân giác của góc xOy.

Bài 1: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.a/Chứng minh: tam giác ABM = tam giác ACM.b/ Chứng minh: AM là đường trung trực của đoạn thẳng BC.c/ Chứng minh: AM là tia phân giác của góc BAC.Bài 2: Cho tam giác ABC. Vẽ cung tròn tâm A bán kính BC, vẽ cung tròn tâm C bán kính AB, chúng cắt nhau tại D (D và B nằm khác phía đối với AC). Chứng minh AD // BC. Bài 3: Cho tam giác ABC (AB < AC). Trên tia AB...
Đọc tiếp

Bài 1: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.

a/Chứng minh: tam giác ABM = tam giác ACM.

b/ Chứng minh: AM là đường trung trực của đoạn thẳng BC.

c/ Chứng minh: AM là tia phân giác của góc BAC.

Bài 2: Cho tam giác ABC. Vẽ cung tròn tâm A bán kính BC, vẽ cung tròn tâm C bán kính AB, chúng cắt nhau tại D (D và B nằm khác phía đối với AC). Chứng minh AD // BC. 

Bài 3: Cho tam giác ABC (AB < AC). Trên tia AB lấy điểm D sao cho AD = AC. E là trung điểm của DC. Từ B vẽ BK vuông góc với CD. Chứng minh: AE // BK.

Bài 4: Cho góc nhọn xOy, Trên tia Ox, Oy lấy tương ứng hai điểm A và B sao cho OA = OB. Vẽ đường tròn tâm A và tâm B có cùng bán kính sao cho chúng cắt nhau tại hai điểm M, N nằm trong góc xOy. Chứng minh:

a/ tam giác OMA = tam giác OMB và tam giác ONA = tam giác ONB.

b/ 3 điểm O, M, N thẳng hàng.

c/ tam giác AMN = tam giác BMN. 

d/ MN là tia phân giác của góc AMB.

Bài 5: Cho tam giác ABC có AB = AC. Gọi D, E là 2 điểm trên cạnh BC sao cho BD = DE = EC. Biết AD = AE.

a/ Chứng minh: ÄABE = ÄACD.

b/ Gọi M là trung điểm của BC. Chứng minh rằng AM là tia phân giác của góc DAE.

c/ Giả sử góc DAE bằng 600, tính các góc còn lại của tam giác ADE.

d/ Chứng minh: AM vuông góc với BC.

Bài 6: Cho tam giác ABC. Vẽ đoạn thẳng AD vuông góc với AB (D và C nằm khác phía đối với AB) sao cho AD = AB. Vẽ đoạn thẳng AE vuông góc với AC (E và B nằm khác phía đối với AC) sao cho AE = AC. Biết DE = BC. Tính góc BAC.

Bài 7: Cho đoạn thẳng AB, điểm C cách đều hai điểm A và B, điểm D cách đều hai điểm A và B (C và D nằm khác phía đối với AB).

a/ Chứng minh: CD là tia phân giác của góc ACD.

b/ Kết quả câu a còn đúng không nếu C và D nằm cùng phía đối với AB?

Chỉ cách giải nhé, KHÔNG phải bài giải

p/s: có thể một số chỗ sai, mong thông cảm

1
27 tháng 7 2021

cần gấp ạ

Câu 1: Phân tích đa thức thành nhân tửa. 6x² - 3xyb. x2 -y2 - 6x + 9c. x2 + 5x - 6Câu 2 thực hiện phép tínha. x + 2² - x - 3 (x + 1)b. x³ - 2x² + 5x - 10 : ( x - 2)Câu 3 Cho biểu thức A = (x - 5) / (x - 4) và B = (x + 5)/ 2x - (x - 6) / (5 - x) - (2x² - 2x - 50) / (2x² - 10x) (điều kiện x khác 0, x khác 4, x khác 5a. Tính giá trị của A khi x² - 3x = 0b. Rút gọn Bc. Tìm giá trị nguyên của x để A : B có giá trị nguyên Câu 4: Cho...
Đọc tiếp

Câu 1: Phân tích đa thức thành nhân tử

a. 6x² - 3xy

b. x2 -y2 - 6x + 9

c. x2 + 5x - 6

Câu 2 thực hiện phép tính

a. x + 2² - x - 3 (x + 1)

b. x³ - 2x² + 5x - 10 : ( x - 2)

Câu 3 Cho biểu thức A = (x - 5) / (x - 4) và B = (x + 5)/ 2x - (x - 6) / (5 - x) - (2x² - 2x - 50) / (2x² - 10x) (điều kiện x khác 0, x khác 4, x khác 5

a. Tính giá trị của A khi x² - 3x = 0

b. Rút gọn B

c. Tìm giá trị nguyên của x để A : B có giá trị nguyên

 Câu 4: Cho tam giác ABC cân tại A đường cao AD, O là trung điểm của AC, điểm E đối xứng với điểm D qua cạnh OA. 

a. Chứng minh tứ giác ADCE là hình chữ nhật

b. Gọi I là trung điểm của AD, chứng tỏ I là trung điểm của BE

c. cho AB = 10 cm BC = 12 cm. Tính diện tích tam giác OAB

d. đường thẳng Oy cắt AB tại K. Tìm điều kiện của tam giác ABC để tứ giác AEDK là hình thang cân

giúp mình giải nhé các bạn

1

Câu 4:Sửa đề: E đối xứng D qua O

a: Xét tứ giác ADCE có

O là trung điểm chung của AC và DE

=>ADCE là hình bình hành

Hình bình hành ADCE có \(\hat{ADC}=90^0\)

nên ADCE là hình chữ nhật

b: ΔABC cân tại A

mà AD là đường cao

nên D là trung điểm của BC

ADCE là hình chữ nhật

=>AE//CD và AE=CD

AE//CD

=>AE//BD

AE=CD

CD=BD

Do đó: AE=BD

Xét tứ giác AEDB có

AE//BD

AE=BD

Do đó: AEDB là hình bình hành

=>AD cắt BE tại trung điểm của mỗi đường
mà I là trung điểm của AD

nên I là trung điểm của BE

c: D là trung điểm của BC

=>\(DB=DC=\frac{BC}{2}=6\left(\operatorname{cm}\right)\)

ΔADB vuông tại D

=>\(AD^2+DB^2=AB^2\)

=>\(AD^2=10^2-6^2=100-36=64=8^2\)

=>AD=8(cm)

Diện tích tam giác ABC là:

\(S_{ABC}=\frac12\cdot AD\cdot BC=\frac12\cdot8\cdot12=4\cdot12=48\left(\operatorname{cm}^2\right)\)

O là trung điểm của AC

=>\(S_{BOA}=\frac12\cdot S_{BAC}=\frac12\cdot48=24\left(\operatorname{cm}^2\right)\)

Câu 3:

a:\(A=\frac{x-5}{x-4}\)

ĐKXĐ của A là x<>4

\(x^2-3x=0\)

=>x(x-3)=0

=>\(\left[\begin{array}{l}x=0\\ x=3\end{array}\right.\)

Thay x=0 vào A, ta được:

\(A=\frac{0-5}{0-4}=\frac{-5}{-4}=\frac54\)

Thay x=3 vào A, ta được:

\(A=\frac{3-5}{3-4}=\frac{-2}{-1}=2\)

b: \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)

\(=\frac{x+5}{2x}+\frac{x-6}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}\)

\(=\frac{\left(x+5)\left(x-5\right)\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)

\(=\frac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}=\frac{x^2-10x+25}{2x\left(x-5\right)}\)

\(=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)

c: Đặt C=A:B

=>\(C=\frac{x-5}{x-4}:\frac{x-5}{2x}=\frac{2x}{x-4}\)

Để C là số nguyên thì 2x⋮x-4

=>2x-8+8⋮x-4

=>8⋮x-4

=>x-4∈{1;-1;2;-2;4;-4;8;-8}

=>x∈{5;3;6;2;8;0;12;-4}

Kết hợp ĐKXĐ, ta được: x∈{3;6;2;8;12;-4}

Câu 1:

a: \(6x^2-3xy=3x\cdot2x-3x\cdot y=3x\left(2x-y\right)\)

b: \(x^2-y^2-6x+9\)

\(=x^2-6x+9-y^2\)

\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)

c: \(x^2+5x-6\)

\(=x^2+6x-x-6\)

=x(x+6)-(x+6)

=(x+6)(x-1)