Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(B=2024\cdot14\)
\(B=2\cdot1012\cdot14\)
\(B=28\cdot1012\)
Vậy B chia hết cho 28
\(B=3^1+3^2+3^3+...+3^{300}\\=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{299}+3^{300})\\=3\cdot(1+3)+3^3\cdot(1+3)+3^5\cdot(1+3)+...+3^{299}\cdot(1+3)\\=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{299}\cdot4\\=4\cdot(3+3^3+3^5+...+3^{299})\)
Vì \(4\cdot(3+3^3+3^5+...+3^{299})\vdots2\)
nên \(B\vdots2\)
B=(3+32)+(33+34)+...+(3299+3300)
B=3(1+3)+33(1+3)+...+3299(1+3)
B=3.4+33.4+...+3299.4
B=4(3+33+...+3299) chia hết cho 2 vì 4 chia hết cho 2
vậy B chia hết cho 2
\(b,x=ƯCLN\left(45,30\right)=15\\ c,x=BCNN\left(6,8\right)=24\\ d,x\in\left\{10;25;50\right\}\)
a: \(x\in\left\{25;30;35\right\}\)
b: \(x\in\left\{24;32;40;48;56;64\right\}\)
c: \(x\in\left\{3;4;6\right\}\)
\(S=1+3+3^2+3^3+...+3^8+3^9\)
\(=1+3+3^2\left(1+3\right)+...+3^8\left(1+3\right)\)
\(=4\left(1+3^2+...+3^8\right)⋮4\)
\(S=\left(1+3\right)+3^2\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+3^2+...+3^8\right)⋮4\)
\(S=\left(1+3\right)+...+3^8\left(1+3\right)=4\left(1+...+3^8\right)⋮4\)
\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)
\(=13\left(1+...+3^7\right)⋮13\)
\(B=3+3^2+3^3+...+3^{300}\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{298}+3^{299}+3^{300}\right)\)
\(B=\left(3+3^2+3^3\right)+3^3\cdot\left(3+3^2+3^3\right)+...+3^{297}\cdot\left(3+3^2+3^3\right)\)
\(B=39+3^3\cdot39+...+3^{297}\cdot39\)
\(B=39\cdot\left(1+3^3+...+3^{297}\right)\)
Vậy B chia hết cho 39