Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\Delta ABC,\hat{BAC}=90^o\)
\(\Rightarrow BC^2=AB^2+AC^2\)(định lý Py-ta-go)
\(\Leftrightarrow10^2=6^2+AC^2\)
\(\Leftrightarrow AC^2=64\)
\(\Leftrightarrow AC=8\left(cm\right)\)
Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông vào \(\Delta ABC, \hat{BAC}=90^o, AH\perp BC\) ta có:
\(AB^2=BH.BC\Leftrightarrow6^2=BH.10\Leftrightarrow BH=3,6\left(cm\right)\)
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AH^2}=\frac{1}{6^2}+\frac{1}{8^2}\Leftrightarrow\frac{1}{AH^2}=\frac{25}{576}\)\(\Leftrightarrow AH^2=\frac{576}{25}\Leftrightarrow AH=4,8\left(cm\right)\)
Chu vi tam giác ABC: 6 + 10 + 8 = 24 (cm)
Diện tích tam giác ABC: \(\frac{4,8.10}{2}=24\left(cm^2\right)\)
a: BC=căn 6^2+8^2=10cm
AH=6*8/10=4,8cm
c:
Xét tứ giác ANHM có
góc ANH=góc AMH=góc MAN=90 độ
=>ANHM là hình chữ nhật
AD vuông góc MN
=>góc DAC+góc ANM=90 độ
=>góc DAC+góc AHM=90 độ
=>góc DAC+góc ABC=90 độ
=>góc DAC=góc DCA
=>DA=DC
góc DAC+góc DAB=90 độ
góc DCA+góc DBA=90 độ
mà góc DAC=góc DCA
nên góc DAB=góc DBA
=>DA=DB
=>DB=DC
=>D là trung điểm của BC
a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)
XétΔABC vuông tại A có \(\sin C=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
=>\(\widehat{B}\simeq53^0\)
b: \(AH=\dfrac{AB\cdot AC}{BC}=2.4\left(cm\right)\)
\(HB=\dfrac{BA^2}{BC}=\dfrac{3^2}{5}=1.8\left(cm\right)\)
HC=BC-HB=3,2(cm)
c: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔHCA vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
d: Xét tứgiác AMHN có \(\widehat{AMH}+\widehat{ANH}=180^0\)
nên AMHN là tứ giác nội tiếp
Xét (AH/2) có
\(\widehat{ANM}\) là góc nội tiếp chắn cung AM
\(\widehat{AHM}\) là góc nội tiếp chắn cung AM
DO đó: \(\widehat{ANM}=\widehat{AHM}=\widehat{B}\)
Ta có: ΔABC vuông tại A
mà AE là đường trung tuyến
nên AE=CE
=>\(\widehat{EAC}=\widehat{C}\)
\(\widehat{ANM}+\widehat{EAC}=\widehat{B}+\widehat{C}=90^0\)
=>AE\(\perp\)MN
tự vẽ hình nha bn
a. Ta có: \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)(Theo định lí Pytago, tam giác ABC vuông tại A)
b. Ta có: \(\frac{BH}{CH}=\frac{3}{4}\)
\(\Leftrightarrow\frac{BH+CH}{CH}=\frac{3}{4}+1\)
\(\Leftrightarrow\frac{BC}{CH}=\frac{7}{4}\)\(\Leftrightarrow\frac{5}{CH}=\frac{7}{4}\)\(\Leftrightarrow CH=\frac{5.4}{7}=\frac{20}{7}\)
\(\Rightarrow BH=5-\frac{20}{7}=\frac{15}{7}\)
Sửa đề: ΔABC vuông tại A
a: MB/NH=BH^2/AB:CH^2/AC
=BH^2/CH^2*AC/AB
=(AB/AC)^4*AC/AB=AB^3/AC^3
b: BC*BM*CN
=BC*BH^2/AB*CH^2/AC
=AH^4/AH=AH^3
c: ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nen AN*AC=AH^2
ΔABC vuông tại A có AH vuông góc BC
nên HB*HC=AH^2
=>HB*HC=AM*AB
góc AMH=góc ANH=góc MAN=90 độ
=>AMHN là hình chữ nhật
=>AH=MN
=>AM*AB=HB*HC=MN^2
d: BM*BA+AN*AC
=BH^2+AH^2=AB^2=BH*BC
a, Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AC^2=100-36=64\Leftrightarrow AC=8\)cm
* Áp dụng hệ thức :
\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{36}{10}=\frac{18}{5}\)cm
* Áp dụng hệ thức :
\(AH^2=CH.BH\)mà \(BC-BH=CH\Rightarrow CH=10-\frac{18}{5}=\frac{32}{5}\)cm
\(\Rightarrow AH^2=\frac{32}{5}.\frac{18}{5}=\frac{576}{25}\Rightarrow AH=\frac{24}{5}\)cm
Chu vi tam giác ABC là : \(P_{ABC}=AB+AC+BC=6+10+8=24\)cm
Diện tích tam giác ABC là : \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.6.8=24\)cm2
b, Ta có AD là phân giác nên : \(\frac{AB}{BC}=\frac{BD}{CD}\)( t/c )
\(\Rightarrow\frac{CD}{BC}=\frac{BD}{AB}\)( tỉ lệ thức )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{CD}{BC}=\frac{BD}{AB}=\frac{CD+BD}{AB+BC}=\frac{BC}{16}=\frac{1}{2}\)
\(\Rightarrow\frac{BD}{6}=\frac{1}{2}\Rightarrow BD=3\)cm
\(\Rightarrow HD=BH-BD=\frac{18}{5}-3=\frac{3}{5}\)cm
Áp dụng định lí Pytago cho tam giác ADH vuông tại H ta có :
\(AD^2=HD^2+AH^2=\frac{9}{25}+\frac{576}{25}=\frac{585}{25}\Rightarrow AD=\frac{3\sqrt{65}}{5}\)cm
3:
ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2
=>AM*AB=AN*AC
a) Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)
Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH:
\(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=2,4\left(cm\right)\)
b) Áp dụng HTL trong tam giác ABH vuông tại H và tam giác AHC vuông tại H:
\(\left\{{}\begin{matrix}AM.AB=AH^2\\AN.AC=AH^2\end{matrix}\right.\)\(\Rightarrowđpcm\)
b: Xét ΔAHB vuông tại H có HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)