K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6:

a: x^2+y^2-6x+2y+6=0

=>x^2-6x+9+y^2+2y+1=16

=>(x-3)^2+(y+1)^2=16

=>R=4; I(3;-1)

d: Phương trình sẽ có dạng là:

a(x-1)+b(y-3)=0

=>ax+by-a-3b=0(*)

Vì d(I;Δ)=4 và I(3;-1) 

nên \(\dfrac{\left|3\cdot a+\left(-1\right)\cdot b-a-3b\right|}{\sqrt{a^2+b^2}}=4\)

=>|2a-4b|=4căn a^2+b^2

=>16(a^2+b^2)=4a^2-16ab+16b^2

=>12a^2+16ab=0

=>3a^2+4ab=0

=>a(3a+b)=0

=>a=0 hoặc b=-3a

Khi a=0 thì (*): by-3b=0

Chọn b=1 thì ta được y-3=0

Khi b=-3a thì chọn b=-3; a=1, ta được:

x-3y-1+3=0

=>x-3y+2=0

5 tháng 7 2021

Đk:\(y^2-2x-5y+6\ge0\)

Pt (1)\(\Leftrightarrow\left(x^2-1\right)-\left(xy-y\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-y\left(x-1\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=x+2\end{matrix}\right.\)

TH1: Thay x=1 vào pt (2) ta đc: \(3\sqrt{y^2-5y+4}=y+9\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+9\ge0\\9\left(x^2-5y+4\right)=y^2+18y+81\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y\ge-9\\8y^2-63y-45=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{63+3\sqrt{601}}{16}\\y=\dfrac{63-3\sqrt{601}}{16}\end{matrix}\right.\) (tm)

TH2: Thay y=x+2 vào pt (2) ta đc:

\(\left(x-1\right)^2+3\sqrt{\left(x+2\right)^2-2x-5\left(x+2\right)+6}=x+2+9\)

\(\Leftrightarrow x^2-3x-10+3\sqrt{x^2-3x}=0\)

Đặt \(t=\sqrt{x^2-3x}\left(t\ge0\right)\)

Pttt: \(t^2-10+3t=0\)\(\Leftrightarrow\left[{}\begin{matrix}t=2\left(tm\right)\\t=-5\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow2=\sqrt{x^2-3x}\)\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-1\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=6\\y=1\end{matrix}\right.\) (tm)

Vậy \(\left(x;y\right)=\text{​​}\left\{\left(1;\dfrac{63+3\sqrt{601}}{16}\right);\left(1;\dfrac{63-3\sqrt{601}}{16}\right),\left(4;6\right),\left(-1;1\right)\right\}\)

NV
5 tháng 7 2021

Xét pt đầu:

\(\left(x^2+x-2\right)-y\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)-y\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2-y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=x+2\end{matrix}\right.\)

- Với \(x=1\) thay xuống pt dưới:

\(3\sqrt{y^2-5y+4}=y+9\) \(\left(y\ge-9\right)\)

\(\Leftrightarrow9\left(y^2-5y+4\right)=y^2+18y+81\)

\(\Leftrightarrow8y^2-63y-45=0\)

\(\Rightarrow y=\dfrac{63\pm3\sqrt{601}}{16}\) (thỏa mãn)

- Với \(y=x+2\) thay xuống pt dưới:

\(\left(x-1\right)^2+3\sqrt{x^2-3x}=x+11\) (ĐKXĐ: ....)

\(\Leftrightarrow x^2-3x+3\sqrt{x^2-3x}-10=0\)

Đặt \(\sqrt{x^2-3x}=t\ge0\)

\(\Rightarrow t^2+3t-10=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-5\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2-3x}=2\Leftrightarrow x^2-3x-4=0\)

\(\Leftrightarrow...\)

NV
24 tháng 3 2022

\(\left\{{}\begin{matrix}3x+1< x-7\\1-2x>x+1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x< -8\\3x< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< -4\\x< 0\end{matrix}\right.\) \(\Rightarrow x< -4\)

Vậy nghiệm của hệ là \(S=\left(-\infty;-4\right)\)

 

2 tháng 4 2022

https://www.facebook.com/profile.php?id=100009900727130

2 tháng 4 2022

Acp đi ông tui tên thiện như á

NV
26 tháng 12 2021

1B

2A

3C

4D

5D

8 tháng 5 2021

a, Ta có : \(\sin^2x+\cos^2x=1\)

\(\Rightarrow\sin x=\sqrt{1-\cos^2x}=\left|\dfrac{\sqrt{15}}{4}\right|\)

\(0< x< \dfrac{\pi}{2}\)

\(\Rightarrow\sin x=\dfrac{\sqrt{15}}{4}\)

Ta lại có : \(\left\{{}\begin{matrix}\sin2x=2\sin x\cos x=\dfrac{\sqrt{15}}{8}\\\cos2x=2\cos^2x-1=-\dfrac{7}{8}\end{matrix}\right.\)

Vậy ...

c, Ta có : \(\tan2x=\dfrac{2\tan x}{1-\tan^2x}=\dfrac{4}{3}=\dfrac{\sin2x}{\cos2x}\)

- Ta có HPT : \(\left\{{}\begin{matrix}\sin^22x+\cos^22x=1\\3\sin2x-4\cos2x=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sin2x=\left|\dfrac{4}{5}\right|\\\cos2x=\left|\dfrac{3}{5}\right|\end{matrix}\right.\)

Lại có : \(\pi< x< \dfrac{3}{2}\pi\)

\(\Rightarrow\left\{{}\begin{matrix}\sin2x=\dfrac{4}{5}\\\cos2x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy ...

 

22 tháng 11 2021

1b)

Song song => (d): x-y +a =0

Vì d đi qua C(2;-2) => 2- (-2)+a=0

<=>a=4

=> d: x-y+4=0

NV
21 tháng 4 2021

2b.

\(Q=\dfrac{cosx}{sinx}+\dfrac{sinx}{1+cosx}=\dfrac{cosx\left(1+cosx\right)+sin^2x}{sinx\left(1+cosx\right)}=\dfrac{cosx+cos^2x+sin^2x}{sinx\left(1+cosx\right)}=\dfrac{cosx+1}{sinx\left(1+cosx\right)}=\dfrac{1}{sinx}\)

4b.

\(\Delta\) có 1 vtpt là (3;-4)

Gọi d là đường thẳng qua M và vuông góc \(\Delta\Rightarrow d\) nhận (4;3) là 1 vtpt

Phương trình d:

\(4\left(x-4\right)+3\left(y+2\right)=0\Leftrightarrow4x+3y-10=0\)

H là giao điểm d và \(\Delta\) nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}3x-4y+5=0\\4x+3y-10=0\end{matrix}\right.\) \(\Rightarrow H\left(1;2\right)\)

13 tháng 5 2022

a) \(d\left(A;\Delta\right)=\dfrac{\left|4.1-3.3+2\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{3}{5}\)

b) \(\overrightarrow{AB}=\left(-3;-2\right)\) là VTCP của đường thẳng d

PT tham số của d: \(\left\{{}\begin{matrix}x=1-3t\\y=3-2t\end{matrix}\right.\left(t\in R\right)\)

c) Đường tròn (C) có bán kính \(R=AB=\sqrt{\left(1+2\right)^2+\left(3-1\right)^2}=\sqrt{13}\)

PT đường tròn (C): \(\left(x-1\right)^2+\left(y-3\right)^2=13\)