Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}=3^{26}.\left(9-3-1\right)=3^{26}.5=3^{24}.9.5=3^{24}.45\)Chia hết cho 45
1)
\(A=156+273+533+y\)
\(A=962+y\)
\(962⋮13\)
Để \(A⋮13\rightarrow y⋮13\)
\(A⋮̸13\rightarrow y⋮̸13\)
2)
\(A=1+3+3^2+...+3^{11}\)
* để A chia hết cho 13:
\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)
\(A=1\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)
\(A=\left(1+3^3+...+3^9\right)\left(1+3+3^2\right)\)
\(A=13\left(1+3^3+3^9\right)⋮13\rightarrowđpcm\)
* để A chia hết cho 40:
\(A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)\(A=\left(1+3^4+...+3^8\right)\left(1+3+3^2+3^3\right)\)
\(A=40\left(1+3^4+...+3^8\right)⋮40\rightarrowđpcm\)
3)
\(25^{24}-25^{23}\)
\(=25^{23}.25-25^{23}.1\)
\(=25^{23}.\left(25-1\right)\)
\(=25^{23}.24\)
\(=25^{23}.4.6⋮6\rightarrowđpcm\)
4) Gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2;a+3;a+4
Tích của 5 số tự nhiên liên tiếp là :
\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\)
Ta có: \(a+1;a+3\) hoặc \(a+2;a+4\)là 2 số chẵn liên tiếp nên sẽ chia hết cho 8
5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5
a;a+1;a+2 luôn sẽ có 1 số chia hết cho 3
5 số tự nhiên liên tiếp đó chia hết cho 3;5;8
\(\Rightarrow⋮120\rightarrowđpcm\)
Bài 1 bạn bổ sung đề bài
Bài 2
521a chia hết cho 8 =>21a chia hết cho 8 =>a=6
Để mình nghĩ câu b đã
`Answer:`
\(S=5+5^2+5^3+5^4+5^5+5^6+...+5^{2004}\)
\(=\left(5+5^2+5^3+5^4+5^5+5^6\right)+\left(5^7+5^8+5^9+5^{10}+5^{11}+5^{12}\right)+...\left(5^{1999}+5^{2000}+5^{2001}+5^{2002}+5^{2003}+5^{2004}\right)\)
\(=5.\left(1+5+5^2+5^3+5^4+5^5\right)+5^7.\left(1+5+5^2+5^3+5^4+5^5\right)+...+5^{1999}.\left(1+5+5^2+5^3+5^4+5^5\right)\)
\(=\left(1+5+5^2+5^3+5^4+5^5\right).\left(5+5^7+...+5^{1999}\right)\)
\(=3906.\left(5+5^7+...+5^{1999}\right)⋮126\)
\(S=5+5^2+5^3+5^4+5^5+5^6+...+5^{2004}\)
\(=\left(5+5^2+5^3+5^4\right)+5^4.\left(5+5^2+5^3+5^4\right)+...+5^{2000}.\left(5+5^2+5^3+5^4\right)\)
\(=\left(5+5^2+5^3+5^4\right).\left(1+5^4+...+5^{2000}\right)\)
\(=780.\left(1+5^4+...+5^{2000}\right)⋮65\)
=5^10(1+5+5^2+5^3)
=5^10*156 chia hết cho 13