K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2023

Ta có:

\(3^{2022}\)

\(=3^2\cdot3^{2020}\)

\(=3^2\cdot3^2\cdot3^{2018}\)

\(=3^4\cdot3^{2018}\)

\(=81\cdot3^{2018}\)

Vậy \(3^{2022}\) chia hết cho 81 

17 tháng 8 2023

3²⁰²² = 3⁴.3²⁰¹⁸

= 81.3²⁰¹⁸ ⋮ 81

Vậy 3²⁰²² ⋮ 81

17 tháng 8 2023

Ta có:

\(11^{2024}\)

\(=11^2\cdot11^{2022}\)

\(=121\cdot11^{2022}\)

Vậy \(11^{2024}\) chia hết cho \(121\)

17 tháng 8 2023

Ta có:

\(B=2024\cdot14\)

\(B=2\cdot1012\cdot14\)

\(B=28\cdot1012\)

Vậy B chia hết cho 28

17 tháng 8 2023

17 tháng 8 2023

Ta có:

\(C=111111\cdot18\)

\(C=3\cdot7\cdot11\cdot13\cdot37\cdot3^2\cdot2\)

\(C=\left(3\cdot3^2\right)\cdot\left(7\cdot11\cdot13\cdot37\cdot2\right)\)

\(C=3^3\cdot74074\)

\(C=27\cdot74074\)

Vậy C chia hết cho 27

AH
Akai Haruma
Giáo viên
22 tháng 4 2023

Lời giải:
$3^{2022}+3^{2020}-(2^{2020}+2^{2020})$

$=3^{2020}(3^2+1)-2.2^{2020}=10.3^{2020}-2^{2021}$

Ta thấy: $10.3^{2020}\vdots 10$, còn $2^{2021}\not\vdots 10$ nên $10.3^{2020}-2^{2021}\not\vdots 10$ 

Bạn xem lại đề.

13 tháng 11 2023

1: \(A=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{97}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{97}\right)\)

\(=30\left(1+2^4+...+2^{96}\right)⋮30\)

2:

\(B=3+3^2+3^3+...+3^{2022}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2021}+3^{2022}\right)\)

\(=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{2020}\left(3+3^2\right)\)

\(=12\left(1+3^2+...+3^{2020}\right)⋮12\)

 

15 tháng 10 2023

\(3+3^2+...+3^{2022}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{2020}+3^{2021}+3^{2022}\right)\)

\(=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+...+3^{2020}\cdot\left(1+3+9\right)\)

\(=3\cdot13+3^4\cdot13+...+3^{2020}\cdot13\)

\(=13\cdot\left(3+3^4+...+3^{2020}\right)\) ⋮ 13 

Vậy....