Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta co : M la trung diem cua BC
Ma EM//AC =>E=90(A=90)
Hay : E la trung diem AB
Và MF//AB =>F=90 (A=90)
Hay : F la trung diem AC
Xét tam giác ABC co :
BE=EA va AF=FC
=>EF la tdb => EF=1/2BC va EF//BC
Hay tu giac EFBC la hinh thang (2 goc day song song)
b, Xet tu giac EMFA co :
A=E=F=90
=>EMFA la HCN
C, Ta co : AM cat EF tai O
Hay O la trung diem cua AM va EF
Nen EF se di qua O
Vay E va F doi xung qua O
d, Xet tam giac AMC co :
AO=OM va AF=FC
=>OF la dtb => OF=1/2MC va OF//MC
Xet tam gac AMC co :
AO=OM va MD=DC
=>OD la dtb => OD=1/2AC va OD//AC
Xet tu giac OMDF co :
OF//MC=>OF//MD
OF=1/2MC=>OF=MD(MD=DC)
=>OMDF la HBH
Ma EA vuong goc voi AC
Hay MF vuong goc voi OD (MF//AE va OD//AC)
=> Hình bình hành OMDF là hình thoi ( HBH có 2 đường chéo vuông góc với nhau là hình thoi)
a, Ta co : M la trung diem cua BC
Ma EM//AC =>E=90(A=90)
Hay : E la trung diem AB
Và MF//AB =>F=90 (A=90)
Hay : F la trung diem AC
Xét tam giác ABC co :
BE=EA va AF=FC
=>EF la tdb => EF=1/2BC va EF//BC
Hay tu giac EFBC la hinh thang (2 goc day song song)
b, Xet tu giac EMFA co :
A=E=F=90
=>EMFA la HCN
C, Ta co : AM cat EF tai O
Hay O la trung diem cua AM va EF
Nen EF se di qua O
Vay E va F doi xung qua O
d, Xet tam giac AMC co :
AO=OM va AF=FC
=>OF la dtb => OF=1/2MC va OF//MC
Xet tam gac AMC co :
AO=OM va MD=DC
=>OD la dtb => OD=1/2AC va OD//AC
Xet tu giac OMDF co :
OF//MC=>OF//MD
OF=1/2MC=>OF=MD(MD=DC)
=>OMDF la HBH
Ma EA vuong goc voi AC
Hay MF vuong goc voi OD (MF//AE va OD//AC)
=> Hình bình hành OMDF là hình thoi ( HBH có 2 đường chéo vuông góc với nhau là hình thoi)
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
Bài 1 : Ta có MB = MC ( gt) , ME // AC => E là trung điểm của AB ( đường thẳng qua trung điểm cạnh tam giác . . )
MB = MC ( gt) , MF // AB ⇒ F là trung điểm của AC ( đường thẳng qua trung điểm cạnh tam giác . . . )
⇒ EF là đường trung bình của tam giác ABC . ⇒ EF // BC Vậy tứ giác BCEF là hình thang
. Mặt khác góc B = góc C ( tam giác ABC cân – gt) ⇒ Tứ giác BCEF là hình thang cân.
Bài 2: a/ chứng minh tứ giác có 2 cặp cạnh đối song song ( gt) nên AEGF là hình bình hành.
tứ giác có góc A = 900 ( gt)
Vậy AEGF là hình chữ nhật
b/ vì GF // AB ⇒ FI // EB
EI // BF (gt) ⇒ BEIF là hình bình hành ( 2 cặp cạnh đối // )
c/ Vì AF = FC , GB = GC ( gt) ⇒ GF là đường trung bình của tam giác ABC ⇒ GF = BE = 1/2 AB ⇒ GF = FI ( vì FI = BE do BEIF là hình bình hành)
⇒ GF // AB mà AB ⊥ AC ⇒ GI ⊥ AC tại F
Vậy AGCI là hình thoi ( hai đ/chéo vuông góc tại trung điểm mỗi đường )
d/ Để AGCI là hình vuông thì AC = GI . mà GI = 2GF = 2 EB = AB Vậy AGCI là hình vuông thì AC = AB ⇒ Tam giác ABC vuông cân tại A.
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Câu 4: Cho tam giác ABC vuông tại A. Biết AB=5cm, BC=13cm. Gọi H, K lần Lượt là trung điểm của AB và BC. Tính độ dài HK
giúp mình nhoa!!