Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tớ làm luôn nhé , không chép lại đề đâu
P = \(\left[\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right].\dfrac{x\left(x+6\right)}{2x-6}\)
ĐKXĐ : x # -6 ; x # 6 ; x # 0 ; x # 3 . Khi đó , ta có :
P = \(\left[\dfrac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right]\).\(\dfrac{x\left(x+6\right)}{2x-6}\)
P = \(\dfrac{x^2-x^2+12x-36}{x-6}.\dfrac{1}{2x-6}\)
P = \(\dfrac{6\left(2x-6\right)}{x-6}.\dfrac{1}{2x-6}=\dfrac{6}{x-6}\)
b) Tương tự
a) \(A=\frac{2x}{x^2-9}+\frac{5}{3-x}-\frac{1}{x+3}\)
\(\Leftrightarrow A=\frac{2x}{\left(x-3\right)\left(x+3\right)}-\frac{5}{x-3}-\frac{1}{x+3}\)
\(\Leftrightarrow A=\frac{2x-5\left(x+3\right)-x+3}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{2x-5x-15-x+3}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-4x-12}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-4}{x-3}\)
b) x = \(\frac{-3}{2}\) ( thỏa mãn )
Vậy với x= \(\frac{-3}{2}\) thì giá trị của biểu thức A bằng \(\frac{-4}{\frac{-3}{2}-3}=\frac{-4}{\frac{-9}{2}}=\left(-4\right)\left(\frac{-2}{9}\right)=\frac{8}{9}\)
c) A là số nguyên
\(\Leftrightarrow\frac{-4}{x-3}\)nguyên
\(\Leftrightarrow x-3=Ư\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng sau :
x-3 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 4 | 2 | 5 | 1 | 7 | -1 |
Vậy.................
\(e ) Để \) \(M\)\(\in\)\(Z \) \(thì\) \(1 \)\(⋮\)\(x +3\)
\(\Leftrightarrow\)\(x + 3 \)\(\in\)\(Ư\)\((1)\)\(= \) { \(\pm\)\(1 \) }
\(Lập\) \(bảng :\)
\(x +3\) | \(1\) | \(- 1\) |
\(x\) | \(-2\) | \(- 4\) |
\(Vậy : Để \) \(M\)\(\in\)\(Z\) \(thì\) \(x\)\(\in\){ \(- 4 ; - 2\) }
e) Để M \(\in\)Z <=> \(\frac{1}{x+3}\in Z\)
<=> 1 \(⋮\)x + 3 <=> x + 3 \(\in\)Ư(1) = {1; -1}
Lập bảng:
x + 3 | 1 | -1 |
x | -2 | -4 |
Vậy ....
f) Ta có: M > 0
=> \(\frac{1}{x+3}\) > 0
Do 1 > 0 => x + 3 > 0
=> x > -3
Vậy để M > 0 khi x > -3 ; x \(\ne\)3 và x \(\ne\)-3/2
a)
\(\frac{x^2-16}{4x-x^2}=\frac{x^2-4^2}{x(4-x)}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)
b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+x+3x+3}{2(x+3)}=\frac{x(x+1)+3(x+1)}{2(x+3)}=\frac{(x+1)(x+3)}{2(x+3)}=\frac{x+1}{2}\)
c)
\(\frac{15x(x+y)^3}{5y(x+y)^2}=\frac{5.3.x(x+y)^2.(x+y)}{5y(x+y)^2}=\frac{3x(x+y)}{y}\)
d) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)
e) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7(x+y)}{-3(x+y)}=\frac{-7}{3}\)
f) \(\frac{x^2-xy}{3xy-3y^2}=\frac{x(x-y)}{3y(x-y)}=\frac{x}{3y}\)
g) \(\frac{2ax^2-4ax+2a}{5b-5bx^2}=\frac{2a(x^2-2x+1)}{5b(1-x^2)}=\frac{2a(x-1)^2}{5b(1-x)(1+x)}\)
\(=\frac{2a(x-1)}{5b(-1)(x+1)}=\frac{2a(1-x)}{5b(x+1)}\)
a: \(A=\dfrac{x^2-3x+x+3+18}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2-2x+21}{\left(x-3\right)\left(x+3\right)}\)
b: Khi x=-1/2 thì \(A=\dfrac{\dfrac{1}{4}+1+21}{\dfrac{1}{4}-9}=-\dfrac{89}{35}\)
c: Để A=4 thì \(4x^2-36=x^2-2x+21\)
=>3x^2+2x-57=0
=>\(x=\dfrac{-1\pm2\sqrt{43}}{3}\)
Phân thức `(7x^2 - x)/(x^2 - 9)` được xác đinh khi
`x^2-9≠0`
`(x-3).(x+3)≠0`
`=> x≠3; x ≠ -3`
`=> C`