Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAD và ΔCED có
CA=CE
\(\widehat{ACD}=\widehat{ECD}\)
CD chung
Do đó: ΔCAD=ΔCED
b: Xét ΔCAB có CD là phân giác
nên \(\dfrac{DA}{AC}=\dfrac{DB}{BC}\)
mà AC<BC
nên DA<DB
a. áp dụng pytago cho tam giác ABC ta có: \(BC=\sqrt{9^2+12^2}=15\)
góc C đối diện cạnh AB
góc B đối diện cạnh AC. Mà AC>AB nên góc B > góc C
b. xét 2 tam giác MHC và MKB có:
MK=MK
MB=MC
Góc HMC = góc KMB (đối đỉnh) => Tam giác MHC= MKB ( c.g.c)
=> Góc K = góc K = 90 => HK vuông góc BK.
mà HK vuông góc AC (gt) => BK//AC (cùng vuông góc với HK)
c. Xét 2(GA+GB+GC)= (GA+GB) + (GB+GC) + (GC+GA)
+ GA+GB > AB = 9
+GB+GC > BC = 15
+GC+GA > AC = 12
=> 2(GA+GB+GC) > 9+15+12=36
=> GA+GB+GC > 18 => đccm
a) Xét ΔABD và ΔEBD:
+) AB = BE
+) DB chung
+) ˆABD=ˆEBDABD^=EBD^ (Vì BD là phân giác)
Suy ra: ΔABD=ΔEBD (c.g.c)
- Suy ra DA = DE và DE ⊥⊥ BC
Tam giác EDC có: EC > CD – DE = CD – DA
Suy ra BC – BA > CD – DA
Có AH // DE ⇒ˆHAE=ˆAED⇒HAE^=AED^ (SLT)
Tam giác ADE cân ⇒ˆDAE=ˆAED⇒DAE^=AED^
Suy ra AE là phân giác của ˆHAC^
Kẻ EF ⊥ AC ⇒⇒ ΔAHE=ΔAFE (1)
Tam giác EFC vuông tại F ⇒ EC > EF (2)
Từ (1) và (2) ⇒ EC > HE.
P/s : hình thì tự vẽ :v
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)
hay AC=4(cm)
Vậy: AC=4cm
b) Xét ΔABD vuông tại A và ΔMBD vuông tại M có
BD chung
\(\widehat{ABD}=\widehat{MBD}\)(BD là tia phân giác của \(\widehat{ABM}\))
Do đó: ΔABD=ΔMBD(cạnh huyền-góc nhọn)
c) Xét ΔDMC vuông tại M có DC là cạnh huyền(DC là cạnh đối diện với \(\widehat{CMD}=90^0\))
nên DC là cạnh lớn nhất trong ΔDMC(Định lí)
\(\Leftrightarrow DC>DM\)(1)
Ta có: ΔABD=ΔMBD(cmt)
nên DA=DM(hai cạnh tương ứng)(2)
Từ (1) và (2) suy ra DA<DC
d) Xét ΔADI vuông tại A và ΔMDC vuông tại M có
DA=DM(cmt)
\(\widehat{ADI}=\widehat{MDC}\)(hai góc tương ứng)
Do đó: ΔADI=ΔMDC(cạnh góc vuông-góc nhọn kề)
Suy ra: DI=DC(hai cạnh tương ứng)
Xét ΔDIC có DI=DC(cmt)
nên ΔDIC cân tại D(Định nghĩa tam giác cân)
a: AB<AC
=>góc C<góc B
b: Xét ΔCBD co
CA vừa là đừog cao, vừa là trung tuyến
=>ΔCBD cân tại C
c: Xét ΔMCB và ΔMDE có
góc MCB=góc MDE
MC=MD
góc CMB=góc DME
=>ΔMCB=ΔMDE
=>BC=DE
a/ xét tam giác ABC vuông tại A, có:
BC^2 = AB^2 + AC^2
=> 10^2= 6^2 + AC^2
100 = 36 + AC^2
AC^2= 100 - 36
AC^2 = 64 (cm)
b/ xét tam giác ABH & tam giác EBH, có:
góc AHB = góc EHB = 90 độ
BH cạnh chung
góc ABH = góc EBH ( tia phân giác góc B )
=>tam giác ABH = tam giác EBH (g-c-g)
=> AB = BE ( 2 canh tương ứng )
=> tam giác ABE cân
c/ xét tam giác ABD & tam giác EBD, có:
AB = BE ( cmt)
góc ABD = góc EBD ( tia phân giác góc B )
BD cạnh chung
=>tam giác ABD = tam giác EBD ( c-g-c )
=> góc A = góc E
mà góc A = 90 độ
=> góc E = 90 độ
=>tam giác BED vuông
a: BC=15cm
Xét ΔABC có AB<AC<BC
nên \(\widehat{C}< \widehat{B}< \widehat{A}\)
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: AD=HD
Câu 6:
a: Xét ΔACD và ΔECD có
CA=CE
\(\widehat{ACD}=\widehat{ECD}\)
CD chung
Do đó: ΔACD=ΔECD
b: Ta có: ΔACD=ΔECD
nên DA=DE
mà DE<DB
nên DA<DB