K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 6: 

a: Xét ΔACD và ΔECD có

CA=CE

\(\widehat{ACD}=\widehat{ECD}\)

CD chung

Do đó: ΔACD=ΔECD

b: Ta có: ΔACD=ΔECD

nên DA=DE

mà DE<DB

nên DA<DB

a: Xét ΔCAD và ΔCED có

CA=CE

\(\widehat{ACD}=\widehat{ECD}\)

CD chung

Do đó: ΔCAD=ΔCED
b: Xét ΔCAB có CD là phân giác

nên \(\dfrac{DA}{AC}=\dfrac{DB}{BC}\)

mà AC<BC

nên DA<DB

Bài 1: Cho DABC có AB = AC. Gọi D là trung điểm của BC. Chứng minh rằng:a)    DABD = DACD.       b) AD là tia phân giác của góc BAC.          c) AD ^ BC.Bài 2: Cho DABC vuông tại A, trên cạnh BC lấy điểm E sao cho BE = BA. Tia phân giác của góc B cắt AC ở D.a)    So sánh độ dài DA và DE.         b) Tính góc BED.  c) CMR: BD ^ AE.Bài 3: Cho góc xOy có số đo khác 1800. Lấy điểm A, B thuộc tia Ox sao cho OA < OB, lấy điểm C, D thuộc tia Oy sao cho OC...
Đọc tiếp

Bài 1: Cho DABC có AB = AC. Gọi D là trung điểm của BC. Chứng minh rằng:

a)    DABD = DACD.       b) AD là tia phân giác của góc BAC.          c) AD ^ BC.

Bài 2: Cho DABC vuông tại A, trên cạnh BC lấy điểm E sao cho BE = BA. Tia phân giác của góc B cắt AC ở D.

a)    So sánh độ dài DA và DE.         b) Tính góc BED.  c) CMR: BD ^ AE.

Bài 3: Cho góc xOy có số đo khác 1800. Lấy điểm A, B thuộc tia Ox sao cho OA < OB, lấy điểm C, D thuộc tia Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC. Chứng minh rằng:

a)    AD = BC;    b) DEAB = DECD;           c) Tia OE là tia phân giác của góc xOy

Bài 4: Cho tam giác ABC (AB<AC) vuông tại A, Gọi M là trung điểm của BC, trên tia AM lấy điểm N sao cho MN = MA.

a)    Chứng minh AMB = NMC.

b)    Chứng minh ACCN.

c)     Chứng minh AM=

Bài 5: Cho hai đoạn thẳng AB và CD cắt nhau tại trung điểm O của AB và CD.

a)    CMR: DAOC = DBOD; AC // BD.

b)    Gọi M, N lần lượt là trung điểm của AC và BD. CMR: O là trung điểm của MN.

Bài 6: Cho , O là trung điểm của BC. Lấy điểm D thuộc tia đối của tia OA sao cho OD = OA.

    a) Chứng minh rằng: .

    b) Chứng minh AC = BD và AC // BD.

c) Trên đoạn thẳng AO lấy điểm I, trên đoạn thẳng OD lấy điểm H sao cho CI // BH.      Chứng minh rằng: và AI = HD.

    d) Kẻ . Chứng minh 3 điểm  E, O, F thẳng hàng.

Bài 7: Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt AC tại E, trên cạnh BC lấy điểm D sao cho BA = BD.

a) Chứng minh:

b) Chứng minh: ED  BC.

c) Trên tia đối của tia AB lấy điểm F sao cho BF = BC. Chứng minh EF = EC.

d) Chứng minh ba điểm D, E, F thẳng hàng.

GIÚP MÌNH VỚI

1
20 tháng 12 2021

Câu 1: 

a: Xét ΔABD và ΔACD có

AB=AC

AD chung

BD=CD

Do đó: ΔABD=ΔACD

9 tháng 6 2020

a. áp dụng pytago cho tam giác ABC ta có: \(BC=\sqrt{9^2+12^2}=15\)

góc C đối diện cạnh AB

góc B đối diện cạnh AC. Mà AC>AB nên góc B > góc C

b. xét 2 tam giác MHC và MKB có:

MK=MK

MB=MC

Góc HMC = góc KMB (đối đỉnh) => Tam giác MHC= MKB ( c.g.c)

=> Góc K = góc K = 90 => HK vuông góc BK.

mà HK vuông góc AC (gt) => BK//AC (cùng vuông góc với HK)

c. Xét 2(GA+GB+GC)= (GA+GB) + (GB+GC) + (GC+GA)

+ GA+GB > AB = 9

+GB+GC > BC = 15

+GC+GA > AC = 12

=>  2(GA+GB+GC) > 9+15+12=36

=> GA+GB+GC > 18 => đccm

a) Xét  ΔABD và ΔEBD:

+) AB = BE

+) DB chung

+) ˆABD=ˆEBDABD^=EBD^  (Vì BD là phân giác)

Suy ra: ΔABD=ΔEBD (c.g.c)

- Suy ra DA = DE và DE ⊥⊥ BC

Tam giác EDC có: EC > CD – DE = CD – DA

Suy ra BC – BA > CD – DA

Có AH // DE ⇒ˆHAE=ˆAED⇒HAE^=AED^ (SLT)

Tam giác ADE cân ⇒ˆDAE=ˆAED⇒DAE^=AED^

Suy ra AE là phân giác của ˆHAC^

Kẻ EF ⊥ AC ⇒⇒ ΔAHE=ΔAFE (1)

Tam giác EFC vuông tại F ⇒ EC > EF   (2)

Từ (1) và (2) ⇒ EC > HE.

P/s : hình thì tự vẽ :v


 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=5^2-3^2=16\)

hay AC=4(cm)

Vậy: AC=4cm

b) Xét ΔABD vuông tại A và ΔMBD vuông tại M có

BD chung

\(\widehat{ABD}=\widehat{MBD}\)(BD là tia phân giác của \(\widehat{ABM}\))

Do đó: ΔABD=ΔMBD(cạnh huyền-góc nhọn)

c) Xét ΔDMC vuông tại M có DC là cạnh huyền(DC là cạnh đối diện với \(\widehat{CMD}=90^0\))

nên DC là cạnh lớn nhất trong ΔDMC(Định lí)

\(\Leftrightarrow DC>DM\)(1)

Ta có: ΔABD=ΔMBD(cmt)

nên DA=DM(hai cạnh tương ứng)(2)

Từ (1) và (2) suy ra DA<DC

d) Xét ΔADI vuông tại A và ΔMDC vuông tại M có 

DA=DM(cmt)

\(\widehat{ADI}=\widehat{MDC}\)(hai góc tương ứng)

Do đó: ΔADI=ΔMDC(cạnh góc vuông-góc nhọn kề)

Suy ra: DI=DC(hai cạnh tương ứng)

Xét ΔDIC có DI=DC(cmt)

nên ΔDIC cân tại D(Định nghĩa tam giác cân)

a: AB<AC

=>góc C<góc B

b: Xét ΔCBD co

CA vừa là đừog cao, vừa là trung tuyến

=>ΔCBD cân tại C

c: Xét ΔMCB và ΔMDE có

góc MCB=góc MDE

MC=MD

góc CMB=góc DME

=>ΔMCB=ΔMDE

=>BC=DE

9 tháng 5 2016

tổng đài tư vấn có bằng chứng ko 

ko có thì đừng nói

10 tháng 5 2016

a/ xét tam giác ABC vuông tại A, có:

          BC^2 = AB^2 + AC^2

=>        10^2=   6^2 +  AC^2 

           100   =   36   +  AC^2

           AC^2=   100 - 36

          AC^2 =   64 (cm)

b/  xét tam giác ABH & tam giác EBH, có:

                  góc AHB = góc EHB = 90 độ

                       BH cạnh chung

                  góc ABH = góc EBH ( tia phân giác góc B )

      =>tam giác ABH = tam giác EBH (g-c-g)

      =>             AB    =        BE ( 2 canh tương ứng )

      => tam giác ABE cân 

c/ xét tam giác ABD & tam giác EBD, có:

                      AB     =        BE ( cmt) 

                góc ABD  =   góc EBD  ( tia phân giác góc B )

                     BD cạnh chung

     =>tam giác ABD = tam giác EBD ( c-g-c )

    =>         góc A     = góc E

    mà         góc A = 90  độ 

     =>         góc E = 90 độ 

     =>tam giác BED vuông

a: BC=15cm

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: AD=HD