K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

Câu 4:

Áp dụng định lý Pytago

\(BC^2=AB^2+AC^2\Rightarrow BC=2\)

Ta có:

\(\overrightarrow{CA}.\overrightarrow{BC}=-\overrightarrow{CA}.\overrightarrow{CB}=-\dfrac{CA^2+CB^2-AB^2}{2}=-\dfrac{2+4-2}{2}=-2\)

Câu 5:

Gọi M là trung điểm BC

\(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

Mà: \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}=\dfrac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)

Câu 6:

\(\left|\overrightarrow{a}-\overrightarrow{b}\right|=3\)

\(a^2+b^2-2\overrightarrow{a}.\overrightarrow{b}=9\)

\(\overrightarrow{a}.\overrightarrow{b}=\dfrac{1^2+2^2-9}{2}=-2\)

Câu 7: 

\(\left|\overrightarrow{AB}-\overrightarrow{AD}+\overrightarrow{CD}\right|=\left|\overrightarrow{DB}+\overrightarrow{CD}\right|\)

                              \(=\left|\overrightarrow{DB}-\overrightarrow{DC}\right|=\left|\overrightarrow{CB}\right|=BC=a\)

26 tháng 12 2023

Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{5}{7}\)

=>\(\dfrac{BD}{5}=\dfrac{DC}{7}\)

mà BD+DC=BC=6

nên \(\dfrac{BD}{5}=\dfrac{CD}{7}=\dfrac{BD+CD}{5+7}=\dfrac{6}{12}=\dfrac{1}{2}\)

=>BD=2,5; CD=3,5

=>\(\dfrac{BD}{BC}=\dfrac{5}{12};\dfrac{CD}{CB}=\dfrac{7}{12}\)

\(\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{BD}\)

\(=\overrightarrow{AB}+\dfrac{5}{12}\cdot\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{5}{12}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(=\dfrac{7}{12}\cdot\overrightarrow{AB}+\dfrac{5}{12}\cdot\overrightarrow{AC}\)

=>Chọn C

17 tháng 12 2023

a) Ta có:

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

         \(=\overrightarrow{AB}+k\overrightarrow{BC}\)

         \(=\overrightarrow{AB}+k\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)

         \(=\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\)

b) \(\overrightarrow{NP}=\overrightarrow{AP}-\overrightarrow{AN}\)

             \(=\dfrac{2}{3}\overrightarrow{AC}-\dfrac{3}{4}\overrightarrow{AB}\)

Để \(AM\perp NP\)

\(\Rightarrow\overrightarrow{AM}.\overrightarrow{NP}=\overrightarrow{0}\)

\(\Rightarrow\left[\left(1-k\right)\overrightarrow{AB}+k\overrightarrow{AC}\right]\left(-\dfrac{3}{4}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\right)=\overrightarrow{0}\)

\(\Leftrightarrow\dfrac{3\left(k-1\right)}{4}AB^2+\dfrac{2k}{3}AC^2+\dfrac{2\left(1-k\right)}{3}\overrightarrow{AB}.\overrightarrow{AC}-\dfrac{3k}{4}\overrightarrow{AB}.\overrightarrow{AC}=\overrightarrow{0}\)

\(\Leftrightarrow\dfrac{3\left(k-1\right)}{4}AB^2+\dfrac{2k}{3}AB^2+\dfrac{1-k}{3}AB^2-\dfrac{3k}{8}AB^2=0\)

\(\Leftrightarrow AB^2\left[\dfrac{3\left(k-1\right)}{4}+\dfrac{2k}{3}+\dfrac{1-k}{3}-\dfrac{3k}{8}\right]=0\)

\(\Leftrightarrow18\left(k-1\right)+16k+8\left(1-k\right)-9k=0\left(AB>0\right)\)

\(\Leftrightarrow17k=10\)

\(\Leftrightarrow k=\dfrac{10}{17}\)

29 tháng 10 2023

a: Gọi H là trung điểm của BC

Xét ΔABC có AH là đường trung tuyến

nên \(\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AH}\)

ΔABC đều có AH là đường trung tuyến

nên \(AH=AB\cdot\dfrac{\sqrt{3}}{2}=3a\cdot\dfrac{\sqrt{3}}{2}\)

=>\(2\cdot AH=3a\sqrt{3}\)

=>\(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=2\cdot AH=3a\sqrt{3}\)

b:

Gọi I là trung điểm của AH

I là trung điểm của AH

=>\(IA=IH=\dfrac{3a\sqrt{3}}{2}\)

ΔABC đều

mà AH là đường trung tuyến

nên AH vuông góc BC

ΔIHC vuông tại H

=>\(CI^2=HI^2+HC^2\)

=>\(CI^2=\left(\dfrac{3a\sqrt{3}}{2}\right)^2+\left(1,5a\right)^2=9a^2\)

=>CI=3a

 

 \(\left|\overrightarrow{CA}-\overrightarrow{HC}\right|=\left|\overrightarrow{CA}+\overrightarrow{CH}\right|\)

\(=\left|2\cdot\overrightarrow{CI}\right|=2CI\)

\(=2\cdot3a=6a\)

NV
7 tháng 3 2021

\(\overrightarrow{AB}.\overrightarrow{CB}+\overrightarrow{AC}.\overrightarrow{BC}=12\)

\(\Leftrightarrow\overrightarrow{BC}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)=12\)

\(\Leftrightarrow\overrightarrow{BC}.\overrightarrow{BC}=12\)

\(\Rightarrow BC^2=12\Rightarrow BC=2\sqrt{3}\)

NV
5 tháng 11 2021

Do M là trung điểm BC nên: \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)

Tương tự: \(\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}\) ; \(\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)

Cộng vế:

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}+\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)

\(=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BA}\right)+\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)+\dfrac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CB}\right)=\overrightarrow{0}\)

b. Từ câu a ta có:

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OM}+\overrightarrow{BO}+\overrightarrow{ON}+\overrightarrow{CO}+\overrightarrow{OP}=\overrightarrow{0}\)

\(\Leftrightarrow-\overrightarrow{OA}+\overrightarrow{OM}-\overrightarrow{OB}+\overrightarrow{ON}-\overrightarrow{OC}+\overrightarrow{OP}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OM}+\overrightarrow{ON}+\overrightarrow{OP}\) (đpcm)