K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2022

loading...

a. Tứ giác AOBF nội tiếp vì có $\angle OAF=\angle OBF=90^o$

b. Chú ý rằng $OF\perp AB$ nên $OF\parallel AE$, ta biến đổi tỉ số bằng định lý Thales:

\(\dfrac{IK}{OF}=\dfrac{AK}{AF}=\dfrac{EG}{EO}=\dfrac{IG}{OF}\), vậy $IK=IG$

c. Nếu mình không nhầm thì PM không vuông NB, vì khi đó $M,P,E$ thẳng hàng, bạn có thể kiểm tra hình vẽ của mình :c

 

24 tháng 5 2022

a/

Ta có A và B cùng nhìn FO dưới 1 góc vuông => A và B thuộc đường tròn đường kính FO

=> AOBF là tứ giác nội tiếp

b/

Ta có 

\(\widehat{BAE}=90^o\) (góc nt chắn nửa đường tròn) \(\Rightarrow AE\perp AB\) (1)

\(FO\perp AB\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn vuông góc và chia đôi dây cung nối 2 tiếp điểm) (2)

Từ (1) và (2) => AE//FO mà KG//AE (gt) => AE//KG//FO

\(\Rightarrow\dfrac{FK}{FA}=\dfrac{OG}{OE}\) (Talet) (1)

Xét tg AFE có

\(\dfrac{FK}{FA}=\dfrac{IK}{AE}\) (Talet trong tam giác) (2)

Xét tg OAE có 

\(\dfrac{OG}{OE}=\dfrac{IG}{AE}\) (Talet trong tam giác) (3)

Từ (1) (2) (3) \(\Rightarrow\dfrac{IK}{AE}=\dfrac{IG}{AE}\Rightarrow IK=IG\)

c/ Câu này mình nghĩ bạn nên kiểm tra lại đề bài

Đề:Câu 4 (3,0 điểm) Cho đường tròn (O) và điểm F nằm ngoài đường tròn. Từ F kẻ các tiếp tuyến FA và FB với đường tròn (O) ( A, B là các tiếp điểm). Vẽ đường kính BE của đường tròn (O), FE cắt AO tại I. Qua I vẽ đường thẳng song song với AE cắt AF tại K, cắt BE tại G.a) Chứng minh tứ giác AOBF nội tiếp b) Chứng minh I là trung điểm của KGCâu 4 (3,0 điểm)Cho đường tròn (O) và điểm F nằm ngoài...
Đọc tiếp

Đề:Câu 4 (3,0 điểm) Cho đường tròn (O) và điểm F nằm ngoài đường tròn. Từ F kẻ các tiếp tuyến FA và FB với đường tròn (O) ( A, B là các tiếp điểm). Vẽ đường kính BE của đường tròn (O), FE cắt AO tại I. Qua I vẽ đường thẳng song song với AE cắt AF tại K, cắt BE tại G.

a) Chứng minh tứ giác AOBF nội tiếp

 

b) Chứng minh I là trung điểm của KGCâu 4 (3,0 điểm)
Cho đường tròn (O) và điểm F nằm ngoài đường tròn. Từ F kẻ các tiếp tuyến FA và
FB với đường tròn (O) ( A, B là các tiếp điểm). Vẽ đường kính BE của đường tròn (O), FE
cắt AO tại I. Qua I vẽ đường thẳng song song với AE cắt AF tại K, cắt BE tại G.
a) Chứng minh tứ giác AOBF nội tiếp
b) Chứng minh I là trung điểm của KG
c) Gọi M là giao của AB và OF, N là trung điểm của FM, NB cắt đường tròn (O) tại
P ( P khác B). Chứng minh PM vuông góc với NBc) Gọi M là giao của AB và OF, N là trung điểm của FM, NB cắt đường tròn (O) tại P ( P khác B). Chứng minh PM vuông góc với NB —->Giải câu b và c thôi nha

1
30 tháng 5 2022

undefinedundefined

2 tháng 6 2018

O A B C H D I K E F

b) Ta thấy (O) giao (I) tại 2 điểm B và D => BD vuông góc OI (tại K) => ^OKB=900.

Xét đường tròn (I) đường kính AB có H thuộc cung AB => AH vuông góc HB hay AH vuông góc BC (1) 

AB và AC là 2 tiếp tuyến của (O) => \(\Delta\)ABC cân tại A. Mà AO là phân giác ^BAC

=> AO vuông góc BC (2)

Từ (1) và (2) => A;H;O thẳng hàng => ^OHB=900.

Xét tứ giác BOHK: ^OKB=^OHB=900 => Tứ giác BOHK nội tiếp đường tròn đường kính OB

=> ^OKH = ^OBH. Lại có ^OBH=^OAB (Cùng phụ ^HBA) => ^OKH = ^OAB

Hay ^OKH = ^HAI. Mà ^OKH + ^KHI = 1800 nên ^HAI + ^KHI = 1800

=> Tứ giác AIKH nội tiếp đường tròn (đpcm).

b) Dễ thấy OI là trung trực của BD và OI cắt BD tại K => K là trung điểm của BD

\(\Delta\)ABC cân đỉnh A có đường phân giác AH => H là trung điểm BC

Từ đó suy ra HK là đường trung bình của \(\Delta\)BDC

=> HK//CD => ^HKD + ^CDK = 1800 (3). Đồng thời \(\frac{HK}{CD}=\frac{1}{2}\)

Tương tự KI là đường trg bình của \(\Delta\)BAD => KI//AD => ^DKI + ^ADK = 1800 (4) Và \(\frac{IK}{AD}=\frac{1}{2}\)

Cộng (3) với (4) => ^KHD + ^KDI + ^CDK + ^ ADK = 3600

<=> ^HKI = 3600 - (^CDK + ^ADK) => ^HKI = ^CDA.

Xét \(\Delta\)HKI và \(\Delta\)CDA: ^HKI=^CDA; \(\frac{HK}{CD}=\frac{IK}{AD}=\frac{1}{2}\)=> \(\Delta\)HKI ~ \(\Delta\)CDA (c.g.c)

=> ^HIK = ^CAD. Mặt khác: ^CAD = ^DBE (Cùng chắn cung DE) => ^HIK=^DBE.

Mà tứ giác AIKH nội tiếp đường tròn => ^HIK=^HAK = >^DBE=^HAK hay ^KBF=^FAK

=> Tứ giác BKFA nội tiếp đường tròn => Đường tròn ngoại tiếp tam giác ABF đi qua điểm K (đpcm).

10 tháng 5 2020

a) Nối CE, CF

Xét \(\Delta CEK\) và \(\Delta CFK\) có:

  \(\widehat{ECK}\)\(\widehat{CFK}\) (vì cùng chắn  \(\widebat{CE}\))

  \(\widehat{CKF}\) chung

\(\Rightarrow\)\(\Delta EKC~\Delta CKF\left(g.g\right)\) 

\(\Rightarrow\frac{EK}{CK}=\frac{CK}{FK}\)

\(\Rightarrow CK^2=EK.FK\)(1)

Vì \(\Delta COK\)vuông tại C, \(CM\perp OK\)

\(\Rightarrow CK^2=MK.OK\)(2)

Từ (1), (2) \(\Rightarrow EK.FK=MK.OK\)

                   \(\Rightarrow\frac{EK}{MK}=\frac{OK}{FK}\)

Xét \(\Delta MEK\)và \(\Delta KOF\)có:

        \(\widehat{MKE}\)chung 

         \(\frac{EK}{MK}=\frac{OK}{FK}\)

\(\Rightarrow\Delta MEK~\Delta FOK\left(c.g.c\right)\)

\(\Rightarrow\widehat{OFE}=\widehat{EMK}\)

\(\Rightarrow\)Tứ giác EMOF nội tiếp

5 tháng 3 2023

Câ b