Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Sửa: C=(x+2)2+\(\left(y-\frac{1}{5}\right)^2\)+10
Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(y-\frac{1}{5}\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2+10\ge10\forall x;y\)
hay C \(\ge10\). Dấu "=" \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{5}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+2=0\\y-\frac{1}{5}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{5}\end{cases}}}\)
Vì x^2 luôn lớn hơn hoặc bằng 0
(X^2+5)^2+4 nhỏ nhất là 29
dấu = xảy ra khi và chỉ khi:
X^2=0
Vậy giá trị nhỏ nhất của biểu thức là 29
\(\frac{-4}{\left(2x-3\right)^2+5}\)
Ta thấy \(\left(2x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5>0\)
\(\Rightarrow\frac{-4}{\left(2x-3\right)^2+5}\ge\frac{-4}{0+5}=-\frac{4}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
:333
Tìm GTNN
Ta có: A = |x - 1| + |x - 4|
=> A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3
=> A \(\ge\)3
Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0
<=> \(1\le x\le4\)
Vậy Min A = 3 <=> \(1\le x\le4\)
Tìm GTLN
Ta có: -|x + 2| \(\le\)0 \(\forall\)x
hay A \(\le\)0 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy Max A = 0 <=> x = -2
a) Vì \(-|x-2|\le0;\forall x\)
\(\Rightarrow3-|x-2|\le3;\forall x\)
\(\Rightarrow\frac{1}{3-|x-2|}\ge\frac{1}{3};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow|x-2|=0\)
\(\Leftrightarrow x=2\)
Vậy MIN \(C=\frac{1}{3}\Leftrightarrow x=2\)
b) Vì \(|x|\ge0;\forall x\)
\(\Rightarrow|x|-5\ge-5;\forall x\)
\(\Rightarrow\frac{7}{|x|-5}\le\frac{-7}{5};\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy MAX \(D=\frac{-7}{5}\Leftrightarrow x=0\)
\(C=\frac{1}{3-\left|x-2\right|}\), \(C_{min}\Leftrightarrow\frac{1}{3-\left|x-2\right|}min\)
\(\Leftrightarrow3-\left|x-2\right|_{max}\)
Ta có : \(\left|x-2\right|\ge0\forall x\Rightarrow3-\left|x-2\right|\le3\)
Dấu "=" xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Với \(x=2\) thì \(C=\frac{1}{3-\left|2-2\right|}=\frac{1}{3}\)
Vậy giá trị nhỏ nhất của \(C=\frac{1}{3}\Leftrightarrow x=2\)
d) \(D=|x+\frac{1}{2}|+|y-\frac{1}{5}|+|x+\frac{1}{4}|\)
\(=\left(|x+\frac{1}{2}|+|x+\frac{1}{4}|\right)+|y-\frac{1}{5}|\)
Đặt \(F=|x+\frac{1}{2}|+|x+\frac{1}{4}|\)
\(=|x+\frac{1}{2}|+|-x-\frac{1}{4}|\ge|x+\frac{1}{2}-x-\frac{1}{4}|\)
Hay \(F\ge\frac{1}{4}\)
Dấu "=" xảy ra\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(-x-\frac{1}{4}\right)\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x+\frac{1}{2}\ge0\\-x-\frac{1}{4}\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x+\frac{1}{2}< 0\\-x-\frac{1}{4}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{-1}{2}\\x\le\frac{-1}{4}\end{cases}}\) hoặc \(\hept{\begin{cases}x< \frac{-1}{2}\\x>\frac{-1}{4}\end{cases}}\)( loại )
\(\Leftrightarrow\frac{-1}{2}\le x\le\frac{-1}{4}\)
Đặt \(E=|y-\frac{1}{5}|\)
Vì \(|y-\frac{1}{5}|\ge0;\forall y\)
Dấu "=" xảy ra \(\Leftrightarrow|y-\frac{1}{5}|=0\)
\(\Leftrightarrow y=\frac{1}{5}\)
\(\Rightarrow F+E\ge\frac{1}{4}\)
Hay \(D\ge\frac{1}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{-1}{2}\le x\le\frac{-1}{4}\\y=\frac{1}{5}\end{cases}}\)
Vậy MIN \(D=\frac{1}{4}\)\(\Leftrightarrow\hept{\begin{cases}\frac{-1}{2}\le x\le\frac{-1}{4}\\y=\frac{1}{5}\end{cases}}\)
Chết mik nhầm câu d) phải là \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|x+\frac{1}{4}\right|\)
Dù sao mik cx cảm ơn bn[ OC ].Không khóc vì em