K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
H
1 tháng 4 2021
Gọi đường thẳng (d) có hàm số y=kx+b (k khác 0) (do hàm số có hệ số góc là k )
Vì (d) đi qua I(0;-1) => -1=0k+b => b=-1
=> y=kx-1(d)
Xét phương trình hoành độ giao điểm chung của (P) và (d) ta có:
-x^2=kx-1
<=> x^2-kx-1=0 (1)
Xét phương trình có a=1;c=-1 => ac=-1 <0
=> (1) luôn có 2 nghiệm phân biệt
=> (P) và (d) luôn cắt nhau tại 2 điểm phân biệt
1 tháng 6 2017
Bài này sử dựng định lý viet để chứng minh:
- Gọi phương trình đường thẳng (d) có hệ số góc a có dạng : \(y=ax+b\left(a\ne0\right)\); \(M\left(1,2\right)\)thuộc (d) nên : \(2=a+b\Rightarrow b=2-a\left(1\right)\). Xét phương trình hoành độ giao điểm có : \(x^2=ax+b\left(2\right)\)thế 1 vào 2 có \(x^2=ax+2-a\Leftrightarrow x^2-ax-\left(2-a\right)=0\)phương trình có : \(\Delta=a^2+4\left(2-a\right)=a^2-4a+8\)\(\Rightarrow\Delta=\left(a^2-4a+4\right)+4=\left(a-2\right)^2+4\ge4\forall a\) nên phương trình luôn có hai nghiệm phân biệt với mọi giá tri của \(a\ne0\)
- Khi đó parabol cắt d tại hai điểm A,B với A,B có hoành độ lần lượt là \(x_A,x_B\) theo vi ét ta có : \(\hept{\begin{cases}x_A+x_B=a\\x_Ax_B=-\left(2-a\right)\end{cases}}\)ta xét \(x_A+x_B-x_Ax_B=a+\left(2-a\right)=2\left(dpcm\right)\)