K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2023

Vì ABCD là hình chữ nhật

nên \(\overrightarrow{AB}+\overrightarrow{AD}=\overrightarrow{AC};\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{BD}\)

=>\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC;\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=\left|\overrightarrow{BD}\right|=BD\)

mà AC=BD(ABCD là hình chữ nhật)

nên \(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{BA}+\overrightarrow{BC}\right|\)

NV
22 tháng 12 2020

\(\overrightarrow{AD}+2\overrightarrow{AB}=\overrightarrow{AD}+\overrightarrow{AB}+\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{AB}=2\overrightarrow{AI}\) (đpcm)

a: vecto BM=vecto BA+vecto AM

=-vecto AB+1/2vecto AD

vecto AN=vecto AD+vecto DN

=vecto AD+1/2*vecto AB

b: vecto BM*vecto AN=vecto 0

=>BM vuông góc với AN

NV
5 tháng 11 2021

Do M là trung điểm BC nên: \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)

Tương tự: \(\overrightarrow{BN}=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}\) ; \(\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)

Cộng vế:

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}+\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}\overrightarrow{BC}+\dfrac{1}{2}\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{CB}\)

\(=\dfrac{1}{2}\left(\overrightarrow{AB}+\overrightarrow{BA}\right)+\dfrac{1}{2}\left(\overrightarrow{AC}+\overrightarrow{CA}\right)+\dfrac{1}{2}\left(\overrightarrow{BC}+\overrightarrow{CB}\right)=\overrightarrow{0}\)

b. Từ câu a ta có:

\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OM}+\overrightarrow{BO}+\overrightarrow{ON}+\overrightarrow{CO}+\overrightarrow{OP}=\overrightarrow{0}\)

\(\Leftrightarrow-\overrightarrow{OA}+\overrightarrow{OM}-\overrightarrow{OB}+\overrightarrow{ON}-\overrightarrow{OC}+\overrightarrow{OP}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OM}+\overrightarrow{ON}+\overrightarrow{OP}\) (đpcm)

AH
Akai Haruma
Giáo viên
22 tháng 10 2020

Lời giải:

a)

$2\overrightarrow{AD}=\overrightarrow{AD}+\overrightarrow{AD}$

$=\overrightarrow{AB}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{CD}$

$=\overrightarrow{AB}+\overrightarrow{AC}+(\overrightarrow{BD}+\overrightarrow{CD})$

$=\overrightarrow{AB}+\overrightarrow{AC}$

$\Rightarrow \overrightarrow{AD}=\frac{\overrightarrow{AB}+\overrightarrow{AC}}{2}$

Tương tự:

$\overrightarrow{BE}=\frac{\overrightarrow{BC}+\overrightarrow{BA}}{2}$

$\overrightarrow{CF}=\frac{\overrightarrow{CA}+\overrightarrow{CB}}{2}$

Cộng lại:

$\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\frac{\overrightarrow{AB}+\overrightarrow{BA}+\overrightarrow{AC}+\overrightarrow{CA}+\overrightarrow{BC}+\overrightarrow{CB}}{2}=\frac{\overrightarrow{0}+\overrightarrow{0}+\overrightarrow{0}}{2}=\overrightarrow{0$}$

Ta có đpcm.

b)

$\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{MD}+\overrightarrow{DA}+\overrightarrow{ME}+\overrightarrow{EB}+\overrightarrow{MF}+\overrightarrow{FC}$

$=(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF})+(\overrightarrow{DA}+\overrightarrow{EB}+\overrightarrow{FC})$

$=(\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF})-(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF})$

$=\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}-\overrightarrow{0}$ (theo phần a)

$=\overrightarrow{MD}+\overrightarrow{ME}+\overrightarrow{MF}$

Ta có đpcm.

NV
26 tháng 12 2022

\(\overrightarrow{AC}+\overrightarrow{BM}=\left(\overrightarrow{AM}+\overrightarrow{MC}\right)+\left(\overrightarrow{BC}+\overrightarrow{CM}\right)=\overrightarrow{AM}+\overrightarrow{BC}+\left(\overrightarrow{MC}+\overrightarrow{CM}\right)=\overrightarrow{AM}+\overrightarrow{BC}\)