Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu \(31\) này mk giải bằng tay nha . mk không biết cách bấm máy mấy bài bày :(
đặc : \(z=a+bi\) với (\(a\overset{.}{,}b\in R\) và \(i^2=-1\))
ta có : \(\left|z-1-2i\right|=4\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2=16\)
\(\Leftrightarrow a^2+b^2=2a+4b+11\)
ta có : \(\left|z+2+i\right|=\sqrt{\left(a+2\right)^2+\left(b+1\right)^2}=\sqrt{a^2+b^2+4a+2b+5}\)
\(=\sqrt{2a+4b+11+4a+2b+5}=\sqrt{6\left(a-1\right)+6\left(b-2\right)+34}\)
áp dụng Bunhiacopxki ta có :
\(\sqrt{\left(6^2+6^2\right)\left[\left(a-1\right)^2+\left(b-2\right)^2\right]}\ge6\left(a-1\right)+6\left(b-2\right)\ge-\sqrt{\left(6^2+6^2\right)\left[\left(a-1\right)^2+\left(b-2\right)^2\right]}\)
\(\Leftrightarrow\sqrt{\left(6^2+6^2\right)\left(16\right)}\ge6\left(a-1\right)+6\left(b-2\right)\ge-\sqrt{\left(6^2+6^2\right)\left(16\right)}\)
\(\Leftrightarrow24\sqrt{2}\ge6\left(a-1\right)+6\left(b-2\right)\ge-24\sqrt{2}\)\(\Rightarrow\sqrt{24\sqrt{2}+34}\ge\sqrt{6\left(a-1\right)+6\left(b-2\right)+34}\ge\sqrt{-24\sqrt{2}+34}\)
\(\Rightarrow\) min của \(\left|z+2+i\right|\) là \(m=\sqrt{-24\sqrt{2}+34}\) và max của \(\left|z+2+i\right|\) là \(M=\sqrt{24\sqrt{2}+34}\)
\(\Rightarrow M^2+m^2=\left(\sqrt{24\sqrt{2}+34}\right)^2+\left(\sqrt{-24\sqrt{2}+34}\right)^2=64\)
bạn chỉ cần tách x4-1 thành (x2-1)(x2+1),rồi đặt x2=t là ok
Câu 17:
\(F(x)=\int \sqrt{\ln^2x+1}\frac{\ln x}{x}dx=\int \sqrt{\ln ^2x+1}\ln xd(\ln x)\)
\(\Leftrightarrow F(x)=\frac{1}{2}\int \sqrt{\ln ^2x+1}d(\ln ^2x)\)
Đặt \(\sqrt{\ln^2 x+1}=t\) \(\Rightarrow \ln ^2x=t^2-1\)
\(\Rightarrow F(x)=\frac{1}{2}\int td(t^2-1)=\int t^2dt=\frac{t^3}{3}+c=\frac{\sqrt{(\ln^2x+1)^3}}{3}+c\)
Vì \(F(1)=\frac{1}{3}\Leftrightarrow \frac{1}{3}+c=\frac{1}{3}\Rightarrow c=0\)
\(\Rightarrow F^2(e)=\left(\frac{\sqrt{\ln ^2e+1)^3}}{3}\right)^2=\frac{8}{9}\)
Câu 11)
Đặt \(\sqrt{3x+1}=t\Rightarrow x=\frac{t^2-1}{3}\)
\(\Rightarrow I=\int ^{5}_{1}\frac{dx}{x\sqrt{3x+1}}==\int ^{5}_{1}\frac{d\left ( \frac{t^2-1}{3} \right )}{\frac{t(t^2-1)}{3}}=\int ^{4}_{2}\frac{2tdt}{t(t^2-1)}=\int ^{4}_{2}\frac{2dt}{(t-1)(t+1)}\)
\(=\int ^{4}_{2}\left ( \frac{dt}{t-1}-\frac{dt}{t+1} \right )=\left.\begin{matrix} 4\\ 2\end{matrix}\right|(\ln|t-1|-\ln|t+1|)=2\ln 3-\ln 5\)
\(\Rightarrow a=2,b=-1\Rightarrow a^2+ab+3b^2=5\)
Đáp án C
Câu 20)
Ta có:
\(I=\int ^{x}_{\frac{1}{e}}\frac{\ln t+1}{t}dt=\int ^{x}_{\frac{1}{e}}(\ln t+1)d(\ln t)=\int ^{x}_{\frac{1}{e}}\ln td(\ln t)+\int ^{x}_{\frac{1}{e}}d(\ln t)\)
\(=\left.\begin{matrix} x\\ \frac{1}{e}\end{matrix}\right|\left ( \ln t+\frac{\ln^2t}{2}+c \right )=\left ( \ln x+\frac{\ln^2x}{2} \right )+\frac{1}{2}=18\leftrightarrow \ln x+\frac{\ln ^2x}{2}=\frac{35}{2}\)
\(\Rightarrow\left[\begin{matrix}x=e^{-7}\\x=e^5\end{matrix}\right.\)
Đáp án A.
Lời giải:
Đặt \(2^{x^2}=t\). Khi đó \(t\geq 1\)
PT trở thành: \(t^2-4t+6=m\Leftrightarrow t^2-4t+(6-m)=0\) (*)
Tư duy:
Nếu (*) có 1 nghiệm duy nhất thì $x^2$ là duy nhất, do đó pt ban đầu chỉ có thể có nhiều nhất 2 nghiệm
Nếu (*) có 2 nghiệm đều khác 1, khi đó $x^2$ có hai giá trị đều khác $0$, kéo theo pt ban đầu có 4 nghiệm
Như vậy, để PT ban đâu có 3 nghiệm thì (*) phải có 2 nghiệm phân biệt , trong đó một nghiệm bằng $1$. Bởi vì khi đó, nghiệm $t$ khác 1 sẽ cho 2 giá trị của $x$, nghiệm $t=1$ cho giá trị $x=0$ duy nhất.
Vậy (*) có nghiệm là $1$, tức là
\(1^2-4.1+(6-m)=0\Leftrightarrow 3-m=0\Leftrightarrow m=3\)
Thử lại thấy thỏa mãn
Đáp án D
Câu nào e đang vướng mắc thì note lại để mọi người giải đáp giúp chứ!
đồng ý ! và mình khuyên bạn, bạn nên ghi rõ chỗ nào thắc mắc và bạn đã cố gắng tới đâu, để mình biết mà chỉ
Lời giải:
Bài 16
Khai triển:
\(F(x)=\int \frac{(x-1)^3}{2x^2}dx=\int \frac{x^3-3x^2+3x-1}{2x^2}dx=\int \frac{x}{2}dx-\int\frac{3}{2}dx+\int\frac{3}{2x}dx-\int\frac{dx}{2x^2}\)
Cụ thể có:
\(\int \frac{x}{2}dx=\frac{x^2}{4};\int\frac{3}{2}dx=\frac{3x}{2};\int\frac{3dx}{2x}=\frac{3}{2}\ln|x|;\int\frac{dx}{2x^2}=-\frac{1}{2x}\)
Do đó \(F(x)=\frac{x^2}{4}-\frac{3x}{2}+\frac{3\ln|x|}{2}+\frac{1}{2x}+c\)
Phương án D.
Bài 18:
Vì \(\int f(x)dx=\sin 2x\cos 2x\Rightarrow f(x)=(\sin 2x\cos 2x)'\)
\(\Leftrightarrow f(x)=(\frac{\sin 4x}{2})'=2\cos 4x\)
(không có đáp án đúng?)
Câu 36
Đặt \(\left\{\begin{matrix} u=\ln (\ln x)\\ dv=\frac{dx}{x}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{1}{x\ln x}dx\\ v=\int\frac{dx}{x}=\ln x\end{matrix}\right.\)
Khi đó \(I=\ln x\ln(\ln x)-\int\ln x\frac{1}{x\ln x}dx=\ln x\ln(\ lnx)-\int\frac{dx}{x}=\ln x\ln (\ln x)-\ln x+c\)
Đáp án C