Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ảnh thật, ngược chiều và nhỏ hơn vật.
b)Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{12}=\dfrac{1}{30}+\dfrac{1}{d'}\)
\(\Rightarrow d'=20cm\)
Chiều cao ảnh: \(\dfrac{h}{h'}=\dfrac{d}{d'}\)
\(\Rightarrow\dfrac{4}{h'}=\dfrac{30}{20}\Rightarrow h'=\dfrac{8}{3}cm\)
a)Ảnh ảo, cùng chiều và nhỏ hơn vật.
b)Khỏang cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{12}=\dfrac{1}{d'}-\dfrac{1}{9}\)
\(\Rightarrow d'=\dfrac{36}{7}cm\)
Chiều cao ảnh: \(\dfrac{h}{h'}=\dfrac{d}{d'}\)
\(\Rightarrow\dfrac{3}{h'}=\dfrac{9}{\dfrac{36}{7}}\Rightarrow h'=\dfrac{12}{7}cm\)
Gọi chiều cao của vật AB là h
chiều cao của ảnh A`B` là h`
khoảng cách từ vật đến TK là d
khoảng cách từ ảnh đến TK là d`
b) Xét △BOA ∼ △B`OA` ta có
\(\dfrac{h}{h`}=\dfrac{d}{d`}\) (1)
Xét △IF`O ∼ △B`F`A` ta có
\(\dfrac{h}{h`}=\dfrac{f}{d`-f}\) (2)
Từ (1) và (2) ta có
\(\dfrac{d}{d`}=\dfrac{f}{d`-f}\) thay f= 15cm ; d= 30cm
➜d`= 30 thay vào (1) ➜ h`= \(\dfrac{h.d`}{d}\) = 5cm
Ta có:
\(\dfrac{1}{d}+\dfrac{1}{d'}=\dfrac{1}{f}\)
\(\Rightarrow\dfrac{1}{16}+\dfrac{1}{d'}=\dfrac{1}{12}\)
\(\Rightarrow d'=48\)
Vậy khoảng cách từ ảnh đến thấu kính là 48cm
a. Dựng ảnh A'B'
b) d > f , ảnh lớn hơn và ngược chiều với vật
c)
Tóm tắt:
OF = 12cm
OA = 18cm
AB = 6cm
A'B' = ?
Giải:
Δ ABF ~ OIF
\(\Rightarrow\dfrac{AB}{OI}=\dfrac{AF}{OF}\Leftrightarrow\dfrac{AB}{A'B'}=\dfrac{OA-OF}{OF}\Leftrightarrow\dfrac{6}{A'B'}=\dfrac{18-12}{12}\)
=> A'B' = 12cm