K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

Gọi N là giao điểm của AD và BC; H là giao điểm của MN và AB

Chứng minh góc AHM= 90; mà góc CAB 45(gt) nên tam giác AHM vuông cân

=>MH = AH

=>MH + HB = AH + HB = 2R (1)

* Tam giác MHB vuông tại H

 HB = MB.cos MBH => MB= \(\frac{HB}{sosMBH}\)=\(\frac{HB}{cos60^0}\)=2HB

MH = MB. sin MBH => MH= MB. sin60=\(\frac{MB\sqrt{3}}{2}=HB\sqrt{3}\)

=> \(HB=\frac{MH}{\sqrt{3}}=\frac{\sqrt{3}MH}{3}\)  (2)

Từ (1) và (2) ta có \(MH+\frac{\sqrt{3}MH}{3}=2R\Rightarrow MH=\frac{6R}{3+\sqrt{3}}=\left(3-\sqrt{3}\right)R\)

Vậy \(S=\frac{AB.MH}{2}=\frac{1}{2}.2R\left(3-\sqrt{3}\right)R=\left(3-\sqrt{3}\right)R^2\)



 

17 tháng 6 2018

cảm ơn bạn, mình còn rất nhiều bt vì mình đang ôn đội tuyển, mong đc các bạn giúp đỡ

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA và OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

Do đó: DM=DB và OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra \(\widehat{COD}=\dfrac{1}{2}\cdot180^0=90^0\)

Ta có: MC+MD=CD

nên CD=CA+DB

b: Xét ΔCOD vuông tại O có OM là đường cao

nên \(CM\cdot DM=OM^2=R^2\)

hay \(AC\cdot BD=R^2\)

14 tháng 12 2015

a/ ta co tam giac ACG co CAB=30=>CB=R

tam giac COM co CB=OB=BM=> tam giac ACG vuong tai C=>MC là tiếp tuyến của đường tròn O

MC2=MO2-OC2=4R2-R2=3R2

tick nha

9 tháng 12 2016

câu này lm thế nào mình ko bít