Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Ta có: \(\left\{{}\begin{matrix}p+e+n=52\\p=e\\n=1,06e\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}p=e=17\\n=18\end{matrix}\right.\)
2.
Ta có: \(\left\{{}\begin{matrix}p+e+n=49\\p=e\\n=53,125\%\left(p+e\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}p=e=16\\n=17\end{matrix}\right.\)
Ý 1:
\(\left\{{}\begin{matrix}P+N+E=52\\N=1,06E\\P=E\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2E+N=52\\N=1,06E\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}E=P=Z=17\\N=18\end{matrix}\right.\\ \Rightarrow A=17+18=35\left(đ.v.C\right)\\ KH.nguyên.tử:^{35}_{17}Cl\)
Ý 2:
\(\left\{{}\begin{matrix}P+N+E=49\\N=53,125\%\left(P+E\right)\\P=E\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2P+N=49\\N-1,0625P=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}N=17\\P=E=Z=16\end{matrix}\right.\Rightarrow A=17+16=33\left(đ.v.C\right)\\ kí.hiệu.nguyên.tử:^{33}_{16}S\)
nbbnbnv ghvghgggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggggg
gọi số proton, electron, notron lần lượt là p,e,n
Bài 1 : ta có hệ : 2p+n=36
2p-n=12
<=>p=e=12; n=12
=> Z=12=> A=12+12=24
Bài 2 theo đề ta có hệ sau:
2p+n=36
2p-2n=0
<=> p=e=n=12
=> Z=12=> A=12+12=24
Bài 3: theo đề ta có hệ :
2p+n=36
p-n=0
<=> p=n=e=12
=> Z=6=>A=12+12=24
a) \(\left\{{}\begin{matrix}2Z+N=52\\2Z-N=16\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}Z=17\\N=18\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2Z+N=95\\2Z-N=25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}Z=30\\N=35\end{matrix}\right.\)
\(a,^{39}_{19}K\\ b,^{35}_{17}Cl\\ c,^{40}_{20}Ca\\ d,^{88}_{38}Sr\)
Câu 3:
\(\left\{{}\begin{matrix}P+E+N=18\\P=E\\\left(P+E\right)=2.N\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2P+N=18\\2P=2N\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}P=E=Z=6\\N=6\end{matrix}\right.\)
Câu 2:
\(\left\{{}\begin{matrix}P+N+E=115\\P=E\\\left(P+E\right)-N=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2P+N=115\\2P-N=25\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}P=E=Z=35\\N=45\end{matrix}\right.\)