Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: B.
Xét f(x) = x 3 + m x 2 + x - 5
Vì
và f(0) = -5 với mọi m ∈ R cho nên phương trình f(x) = 0 luôn có nghiệm dương.
+ Ta có y ' = f ' ( x ) = a d - b c ( c x + d ) 2 . Từ đồ thị hàm số y= f’(x) ta thấy:
Đồ thị hàm số y= f’(x) có tiệm cận đứng x=1 nên –d/c= 1 hay c= -d
Đồ thị hàm số y= f’(x ) đi qua điểm (2;2)
⇒ a d - b c ( 2 c + d ) 2 = 2 ↔ a d - b c = 2 ( 2 c + d ) 2
Đồ thị hàm số y= f’(x) đi qua điểm (0;2)
⇒ a d - b c d 2 = 2 ↔ a d - b c = 2 d 2
Đồ thị hàm số y=f(x) đi qua điểm (0;3) nên b/d= 3 hay b= 3d
Giải hệ gồm 4 pt này ta được a=c= -d và b= 3d .
Ta chọn a=c= 1 ; b= -3 ; d= -1
⇒ y = x - 3 x - 1
Chọn D.
+Ta có đạo hàm y’ = 3x2- 6mx+ 3( m+ 1) .
Do K thuộc ( C) và có hoành độ bằng -1, suy ra K( -1; -6m-3)
Khi đó tiếp tuyến tại K có phương trình
∆: y= ( 9m+ 6) x+ 3m+ 3
Đường thẳng ∆ song song với đường thẳng d
⇒ 3 x + y = 0 ⇔ y = - 3 x ⇔ 9 m + 6 = - 3 3 m + 3 ≠ 0 ⇔ m = - 1 m ≠ - 1
Vậy không tồn tại m thỏa mãn đầu bài.
Chọn D.
Đáp án: D.
Vì x 2 + x + 4 > 0 với mọi x nên phương trình (x − 3)( x 2 + x + 4) = 0 chỉ có một nghiệm là x = 3. Do đó, đồ thị của hàm số đã cho chỉ có một giao điểm với trục hoành.
Đáp án: D.
Vì x 2 + x + 4 > 0 với mọi x nên phương trình (x − 3)( x 2 + x + 4) = 0 chỉ có một nghiệm là x = 3. Do đó, đồ thị của hàm số đã cho chỉ có một giao điểm với trục hoành.
3.
\(y'=3x^2-3\Rightarrow k=y'\left(1\right)=0\)
4.
\(y'=-2x+2=0\Rightarrow x=1\)
\(y''=-2< 0\Rightarrow x=1\) là điểm cực đại
Vậy hàm số ko có điểm cực tiểu
5.
Pt hoành độ giao điểm: \(\frac{x^2-4}{x-1}=0\Rightarrow x^2-4=0\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\) có 2 giao điểm với trục Ox
6.
\(\lim\limits_{x\rightarrow6}\frac{x+4}{-x+6}=\infty\Rightarrow x=6\) là tiệm cận đứng
7.
\(y'=2x+2\)
Tiếp tuyến song song với trục Oy nên có hệ số góc \(k=0\)
\(\Rightarrow2x+2=0\Rightarrow x=-1\Rightarrow y=-4\)
Vậy pttt có dạng \(y+4=0\)
9.
Hai tiệm cận có pt lần lượt \(x=1\) và \(y=1\)
Tích khoảng cách từ điểm M đến 2 tiệm cận:
\(d=\left|x_0-1\right|.\left|\frac{x_0+4}{x_0-1}-1\right|=\left|\left(x_0-1\right).\frac{5}{\left(x_0-1\right)}\right|=5\)
10.
Hàm \(y=2x\) có \(y'=2>0\) đồng biến trên miền xác định