Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\sqrt{4\cdot a^4b^2\cdot7}=2a^2b\sqrt{7}\left(b>=0\right)\)
b: \(=\sqrt{36\cdot b^4\cdot a^2\cdot2}=-6ab^2\sqrt{2}\)
Từ kết quả bài toán suy ngược ra thôi
Muốn giải thích thì cứ phá 2 vế ra rồi so sánh là tìm ra cách tách biểu thức
Câu 4 mình ko biết giải quyết kiểu lớp 9 (mặc dù chắc chắn là biểu thức sẽ được biến đổi như vầy)
Đó là kiểu trình bày của lớp 11 hoặc 12 để bạn tham khảo thôi
a)\(\dfrac{\sqrt{243a}}{\sqrt{3a}}=\dfrac{\sqrt{24}.\sqrt{3a}}{\sqrt{3a}}=2\sqrt{6}\)
b)\(\dfrac{3\sqrt{18a^2b^4}}{\sqrt{2a^2b^2}}=3\sqrt{9b^2}=\left[{}\begin{matrix}9b\\-9b\end{matrix}\right.\)
a: \(=\sqrt{\left(2-a\right)^2\cdot\dfrac{2a}{a-2}}=\sqrt{2a\left(a-2\right)}\)
b: \(=\sqrt{\left(x-5\right)^2\cdot\dfrac{x}{\left(5-x\right)\left(5+x\right)}}\)
\(=\sqrt{\left(x-5\right)\cdot\dfrac{x}{x+5}}\)
c: \(=\sqrt{\left(a-b\right)^2\cdot\dfrac{3a}{\left(b-a\right)\left(b+a\right)}}=\sqrt{\dfrac{3a\left(b-a\right)}{b+a}}\)
1) \(ab^4\sqrt{a}=\sqrt{\left(ab^4\right)^2a}=\sqrt{a^2b^8a}=\sqrt{a^3b^8}\)
2) \(-2ab^2\sqrt{5a}=-\sqrt{\left(-2ab^2\right)^25a}=\sqrt{4a^2b^45a}\)
\(\sqrt{20a^3b^4}\)
\(a,=\sqrt{12a^4b}\\ b,\sqrt{18\left(-a\right)^4b^8}\)