K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

Đặt A=\(\sqrt{19+\sqrt{136}}-\sqrt{19-\sqrt{136}}\)

=> A^2=38-2\(\sqrt{\left(19+\sqrt{136}\right)\left(19-\sqrt{136}\right)}\)

=38-2\(\sqrt{19^2-136}\)

=38-2\(\sqrt{225}\)=38-30=8

B)B=3-4+2.5=9

B4:đặt \(\sqrt{x+5}=t\)

=>\(\sqrt{4t}-2\sqrt{t}+\sqrt{9t}\)=6

=>\(\sqrt{t}\)(2-2+3)=6

=>\(\sqrt{t}\)=6

=>t=36 tmđk

NV
19 tháng 11 2021

12. \(\dfrac{4\sqrt{3}}{3}\pi\)

13. \(12\pi\)

14. \(\sqrt{6}\pi a^2\)

27 tháng 11 2023

Câu 2:

a: \(y=\left(2x^2-x+1\right)^{\dfrac{1}{3}}\)

=>\(y'=\dfrac{1}{3}\left(2x^2-x+1\right)^{\dfrac{1}{3}-1}\cdot\left(2x^2-x+1\right)'\)

\(=\dfrac{1}{3}\cdot\left(4x-1\right)\left(2x^2-x+1\right)^{-\dfrac{2}{3}}\)

b: \(y=\left(3x+1\right)^{\Omega}\)

=>\(y'=\Omega\cdot\left(3x+1\right)'\cdot\left(3x+1\right)^{\Omega-1}\)

=>\(y'=3\Omega\left(3x+1\right)^{\Omega-1}\)

c: \(y=\sqrt[3]{\dfrac{1}{x-1}}\)

=>\(y'=\dfrac{\left(\dfrac{1}{x-1}\right)'}{3\cdot\sqrt[3]{\left(\dfrac{1}{x-1}\right)^2}}\)

\(=\dfrac{\dfrac{1'\left(x-1\right)-\left(x-1\right)'\cdot1}{\left(x-1\right)^2}}{\dfrac{3}{\sqrt[3]{\left(x-1\right)^2}}}\)

\(=\dfrac{-x}{\left(x-1\right)^2}\cdot\dfrac{\sqrt[3]{\left(x-1\right)^2}}{3}\)

\(=\dfrac{-x}{\sqrt[3]{\left(x-1\right)^4}\cdot3}\)

d: \(y=log_3\left(\dfrac{x+1}{x-1}\right)\)

\(\Leftrightarrow y'=\dfrac{\left(\dfrac{x+1}{x-1}\right)'}{\dfrac{x+1}{x-1}\cdot ln3}\)

\(\Leftrightarrow y'=\dfrac{\left(x+1\right)'\left(x-1\right)-\left(x+1\right)\left(x-1\right)'}{\left(x-1\right)^2}:\dfrac{ln3\left(x+1\right)}{x-1}\)

\(\Leftrightarrow y'=\dfrac{x-1-x-1}{\left(x-1\right)^2}\cdot\dfrac{x-1}{ln3\cdot\left(x+1\right)}\)

\(\Leftrightarrow y'=\dfrac{-2}{\left(x-1\right)\cdot\left(x+1\right)\cdot ln3}\)

e: \(y=3^{x^2}\)

=>\(y'=\left(x^2\right)'\cdot ln3\cdot3^{x^2}=2x\cdot ln3\cdot3^{x^2}\)

f: \(y=\left(\dfrac{1}{2}\right)^{x^2-1}\)

=>\(y'=\left(x^2-1\right)'\cdot ln\left(\dfrac{1}{2}\right)\cdot\left(\dfrac{1}{2}\right)^{x^2-1}=2x\cdot ln\left(\dfrac{1}{2}\right)\cdot\left(\dfrac{1}{2}\right)^{x^2-1}\)

h: \(y=\left(x+1\right)\cdot e^{cosx}\)

=>\(y'=\left(x+1\right)'\cdot e^{cosx}+\left(x+1\right)\cdot\left(e^{cosx}\right)'\)

=>\(y'=e^{cosx}+\left(x+1\right)\cdot\left(cosx\right)'\cdot e^u\)

\(=e^{cosx}+\left(x+1\right)\cdot\left(-sinx\right)\cdot e^u\)

loading...

NV
24 tháng 2 2021

\(\dfrac{d}{dx}\left(f\left(x\right)\right)\equiv f'\left(x\right)\)

 

\(\dfrac{1}{sinx}dx=\dfrac{sinx}{sin^2x}dx=\dfrac{sinx}{1-cos^2x}dx=\dfrac{d\left(cosx\right)}{cos^2x-1}\)

24 tháng 2 2021

\(\int\dfrac{e^xdx}{e^x-e^{-x}}\) 

Một cách làm khác ngoài sử dụng nguyên hàm phụ ạ!

20 tháng 9 2017

16 tháng 12 2021

Tui ko chơi ff,tui chỉ chơi bc thui

Bạo lực học đường thế này thì.....

OLM sẽ thấy thế nào khi chỗ học biến thành chỗ chơi bạo lực ầm ĩ như vậy hả?

@congtybaocao 

mik chs ff nhưng đây là chỗ học chứ ko fai chỗ bn chs game,OK

báo cáo bn

@congtybaocao

30 tháng 1 2016

bạn chỉ cần tách x4-1  ​thành (x2-1)(x2+1),rồi đặt x2=t là ok

30 tháng 1 2016

\(\frac{1}{12}\)