Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1. ĐKXĐ: \(x\ge0\)
\(x-7\sqrt{x}+10=0\)
\(\Leftrightarrow x-2\sqrt{x}-5\sqrt{x}+10=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-5\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{x}-5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=25\end{matrix}\right.\) ( thỏa mãn đk )
Vậy \(S=\left\{4;25\right\}\)
2. ĐKXĐ: \(x\ge4\)
\(\sqrt{x^2-16}-5\sqrt{x-4}=0\)
\(\Leftrightarrow\sqrt{x^2-16}=5\sqrt{x-4}\)
\(\Leftrightarrow x^2-16=25\left(x-4\right)\)
\(\Leftrightarrow x+4=25\)
\(\Leftrightarrow x=21\) ( thỏa mãn đk )
Vậy \(S=\left\{21\right\}\)
3. ĐKXĐ: \(x\ge-4\)
\(\sqrt{x^2-16}-3\sqrt{x+4}=0\)
\(\Leftrightarrow\sqrt{x^2-16}=3\sqrt{x+4}\)
\(\Leftrightarrow x^2-16=9\left(x+4\right)\)
\(\Leftrightarrow x-4=9\)
\(\Leftrightarrow x=13\) ( thỏa mãn đk )
Vậy \(S=\left\{13\right\}\)
Bài 1:
a) ĐKXĐ: \(x\ge0\)
\(x-7\sqrt{x}+10=0\)
\(\Rightarrow x+10=7\sqrt{x}\)
\(\Rightarrow x^2+20x+100=49x\)
\(\Rightarrow x^2-29x+100=0\)
\(\Rightarrow\left(x^2-4x\right)-\left(25x-100\right)=0\)
\(\Rightarrow\left(x-4\right)\left(x-25\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-4=0\\x-25=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=25\end{matrix}\right.\)
b) ĐKXĐ:\(\left\{{}\begin{matrix}x^2-16\ge0\\x-4\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x-4\right)\left(x+4\right)\ge0\\x-4\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x+4\ge0\\x-4\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge-4\\x\ge4\end{matrix}\right.\Rightarrow x\ge4\)
\(\sqrt{x^2-16}-5\sqrt{x-4}=0\)
\(\Rightarrow\sqrt{\left(x-4\right)\left(x+4\right)}-5\sqrt{x-4}=0\\ \Rightarrow\sqrt{x-4}\left(\sqrt{x+4}-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x-4}=0\\\sqrt{x+4}-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x-4=0\\\sqrt{x+4}=5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\\x+4=25\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=4\\x=21\end{matrix}\right.\)
Bài 1 :
1, Thay x = 36 vào A ta được : \(A=\dfrac{4\sqrt{36}+1}{\sqrt{36}+3}=\dfrac{25}{9}\)
2, Với \(x\ge0;x\ne9\)
\(B=\dfrac{x-\sqrt{x}+12}{x-9}-\dfrac{3}{\sqrt{x}-3}=\dfrac{x-\sqrt{x}+12-3\left(\sqrt{x}+3\right)}{x-9}\)
\(=\dfrac{x-4\sqrt{x}+3}{x-9}=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)
3, \(B< \dfrac{1}{5}\Rightarrow\dfrac{\sqrt{x}-1}{\sqrt{x}+3}-\dfrac{1}{5}< 0\Leftrightarrow\dfrac{5\sqrt{x}-5-\sqrt{x}-3}{5\left(\sqrt{x}+3\right)}< 0\)
\(\Rightarrow4\sqrt{x}-8< 0\Leftrightarrow\sqrt{x}-2< 0\Leftrightarrow x< 4\)
Kết hợp với đk vậy 0 =< x < 4
4, \(M=A:B=\dfrac{4\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{4\left(\sqrt{x}-1\right)+5}{\sqrt{x}-1}=4+\dfrac{5}{\sqrt{x}-1}\)
\(\Rightarrow\sqrt{x}-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\sqrt{x}-1\) | 1 | -1 | 5 | -5 |
x | 4 | 0 | 36 | loại |
c: Ta có: \(\sqrt{25x-50}+2\cdot\sqrt{\dfrac{49x-98}{4}}=6\)
\(\Leftrightarrow5\sqrt{x-2}+7\sqrt{x-2}=6\)
\(\Leftrightarrow12\sqrt{x-2}=6\)
\(\Leftrightarrow x-2=\dfrac{1}{4}\)
hay \(x=\dfrac{9}{4}\)
Bài 2:
a: Ta có: \(\sqrt{64x+64}-\sqrt{25x+25}+\sqrt{4x+4}=20\)
\(\Leftrightarrow8\sqrt{x+1}-5\sqrt{x+1}+2\sqrt{x+1}=20\)
\(\Leftrightarrow5\sqrt{x+1}=20\)
\(\Leftrightarrow x+1=16\)
hay x=15
b: Ta có: \(\sqrt{3x}+5\sqrt{27x}-16=\sqrt{432x}\)
\(\Leftrightarrow\sqrt{3x}+15\sqrt{3x}-12\sqrt{3x}=16\)
\(\Leftrightarrow4\sqrt{3x}=16\)
\(\Leftrightarrow3x=16\)
hay \(x=\dfrac{16}{3}\)
\(\dfrac{1}{\sqrt{\dfrac{5}{7}}+\sqrt{\dfrac{5}{13}}+1}+\dfrac{1}{\sqrt{\dfrac{7}{13}}+\sqrt{\dfrac{7}{5}}+1}+\dfrac{1}{\sqrt{1\dfrac{6}{7}}+\sqrt{2\dfrac{3}{5}}+1}\\ =\dfrac{1}{\dfrac{\sqrt{5}}{\sqrt{7}}+\dfrac{\sqrt{5}}{\sqrt{13}}+\dfrac{\sqrt{5}}{\sqrt{5}}}+\dfrac{1}{\dfrac{\sqrt{7}}{\sqrt{13}}+\dfrac{\sqrt{7}}{\sqrt{5}}+\dfrac{\sqrt{7}}{\sqrt{7}}}+\dfrac{1}{\dfrac{\sqrt{13}}{\sqrt{7}}+\dfrac{\sqrt{13}}{\sqrt{5}}+\dfrac{\sqrt{13}}{\sqrt{13}}}\\ =\left(\dfrac{1}{\sqrt{5}}+\dfrac{1}{\sqrt{7}}+\dfrac{1}{\sqrt{13}}\right)\cdot\dfrac{1}{\dfrac{1}{\sqrt{5}}+\dfrac{1}{\sqrt{7}}+\dfrac{1}{\sqrt{13}}}\\ =1\)
Bạn ghi tên của bạn làm gì vậy?😂