Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^6-n^4+2n^3+2n^2\)
\(=\left(n^6-n^4\right)+\left(2n^3+2n^2\right)=n^4\left(n^2-1\right)+2n^2\left(n+1\right)\)
\(=n^4\left(n-1\right)\left(n+1\right)+2n^2\left(n+1\right)\)
\(=\left(n^5-n^4\right)\left(n+1\right)+2n^2\left(n+1\right)\)
\(=\left(n^5-n^4+2n^2\right)\left(n+1\right)\)
\(=n^2\left(n+1\right)\left(n^3-n^2+2\right)\)
\(=n^2\left(n+1\right)\left[\left(n^3+1\right)-\left(n^2-1\right)\right]\)
\(=n^2\left(n+1\right)\left[\left(n+1\right)\left(n^2-n+1\right)-\left(n-1\right)\left(n+1\right)\right]\)
\(=n^2\left(n+1\right)\left(n+1\right)\left(n^2-n+1-n+1\right)\)
\(=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)
Với mọi \(n\inℕ\)và \(n\ge1\), ta có:
\(n^2\left(n+1\right)^2=\left[n\left(n+1\right)\right]^2\)luôn là số chính phương.
Mà \(n^2-2n+2=\left(n-1\right)^2+1\)luôn không là số chính phương ( vì n>1; \(n\inℕ\))
Do đó \(n^2\left(n+1\right)^2\left(n^2-2n+1\right)\)không phải là số chính phương với mọi \(n>1,n\inℕ\)
\(\Rightarrow n^6-n^4+2n^3+2n^2\)không phải là số chính phương với mọi \(n>1,n\inℕ\)
Vậy nếu \(n\inℕ,n>1\)thì số có dạng \(n^6-n^4+2n^3+2n^2\)không phải là số chính phương
TÍNH CHẤT : Nếu tích của các số là một số chính phương thì mỗi số đều là một số chính phương.
a^2 + b^2 + c^2= ab + bc + ca
2 ( a^2 + b^2 + c^2 ) = 2 ( ab + bc + ca)
2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca
a^2 + a^2 + b^2 + b^2 + c^2+ c^2 – 2ab – 2bc – 2ca = 0
a^2 + b^2 – 2ab + b^2 + c^2 – 2bc + c² + a² – 2ca = 0
(a^2 + b^2 – 2ab) + (b^2 + c^2 – 2bc) + (c^2 + a^2 – 2ca) = 0
(a – b)^2 + (b – c)^2 + (c – a)^2 = 0
Vì (a-b)^2 lớn hơn hoặc bằng 0 với mọi a và b
(b-c)^2 lớn hơn hoặc bằng 0 với mọi c và b
(c-a)^2 lớn hơn hoặc bằng 0 với mọi a và c
=> (a-b)^2 =0 ; (b-c)^2=0 ; (c-a)^2=0
=> a=b ; b=c ; c=a
=>a=b=c
a) n^2.(n+1)+2n.(n+1)
= (n+1).(n^2+2n)
= n.(n+1).(n+2) chia hết cho 6 ( do 3 số liên tiếp chia hết cho 6)
b) (2n-1)^3 - (2n-1)
= (2n-1).[(2n-1)^2 - 1]
= (2n-1).(2n-1-1).(2n-1+1)
= (2n-1).2.(n-1).2n
= 4.n.(n-1).(2n-1)
mà n.(n-1) là 2 số tự nhiên liên tiếp
=> n hoặc n - 1 sẽ chia hết cho 2
=> 4.n.(n-1) sẽ chia hết cho 4.2 = 8
=> 4.n.(n-1).(2n-1) chia hết cho 8
=> (2n-1)^3 - (2n-1) chia hết cho 8
Em chưa học làm dạng này , em làm thử thôi nhá, sai xin chỉ dạy thêm nha
2 . \(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{n^7-n+n^2+n+1}{n^8-n^2+n^2+n+1}\)
\(=\dfrac{n\left(n^6-1\right)+n^2+n+1}{n^2\left(n^6-1\right)+n^2+n+1}=\dfrac{n\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n^3-1\right)+n^2+n+1}\)\(=\dfrac{n\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}{n^2\left(n^3+1\right)\left(n-1\right)\left(n^2+n+1\right)+n^2+n+1}\)
\(=\dfrac{\left(n^2+n+1\right)\left[\left(n^4+n\right)\left(n-1\right)\right]}{\left(n^2+n+1\right)\left[\left(n^5+n^2\right)\left(n-1\right)+1\right]}\)
\(=\dfrac{n^5-n^4+n^2-n}{n^6-n^5+n^3-n^2+1}=\dfrac{n^4\left(n-1\right)+n\left(n-1\right)}{n^5\left(n-1\right)+n^2\left(n-1\right)+1}\)
\(=\dfrac{\left(n-1\right)\left(n^4+n\right)}{\left(n-1\right)\left(n^5+n^2\right)+1}\)
Vậy ,với mọi số nguyên dương n thì phân thức trên sẽ không tối giản
\(A=n^4+2n^3-n^2-2n\)
\(=n^3\left(n+2\right)-n\left(n-2\right)\)
\(=n\left(n+1\right)\left(n-1\right)\left(n-2\right)\)
Mà \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\forall n\in Z\)
=> đpcm
a) \(49-x^2+2xy-y^2\)
\(=49-\left(x^2-2xy+y^2\right)\)
\(=49-\left(x-y\right)^2\)
\(=\left(7-x+y\right)\left(7+x-y\right)\)
c) \(\frac{1}{36}a^2-\frac{1}{4}b^2\)
\(=\frac{1}{4}\left(\frac{1}{9}a^2-b^2\right)\)
\(=\frac{1}{4}\left(\frac{1}{3}a-b\right)\left(\frac{1}{3}a+b\right)\)
a) \(P=2+2^2+2^3+...+2^{2011}+2^{2012}\)
\(P=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2011}+2^{2012}\right)\)
\(P=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{2010}\left(2+2^2\right)\)
\(P=6+2^2\cdot6+...+2^{2010}\cdot6\)
\(P=6\cdot\left(1+2^2+...+2^{2010}\right)\) chia hết cho 6
=> P chia hết cho 6
b) Ta có: \(A=n^4+2n^3+2n^2+2n+1\)
\(A=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)\)
\(A=n^2\left(n+1\right)^2+\left(n+1\right)^2\)
\(A=\left(n+1\right)^2\left(n^2+1\right)\)
Để A là số chính phương thì \(n^2+1\) cũng phải là số chính phương
Đặt \(n^2+1=x^2\left(x\inℤ\right)\)
\(\Rightarrow x^2-n^2=1\Leftrightarrow\left(x-n\right)\left(x+n\right)=1=1\cdot1=\left(-1\right)\cdot\left(-1\right)\)
\(\Rightarrow x-n=x+n\Rightarrow n=0\)
Mà n > 0 => Không tồn tại n thỏa mãn
=> A không là số chính phương
=> đpcm