\(2^{100}\)viết trong hệ thập phân có bao nhiêu chữ số

b, Cho P và P+...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2017

Câu 1:

Để B là số nguyên

=>5 chia hết cho n-3 hay n-3 thuộc vào Ư(5)={1;5;-1;-5}

Ta có bảng:

n-315-1-5
n482-2
B51-5

-1

=> n thuộc vào {4;8;2;-2} (thỏa mãn điều kiện n thuộc Z)

3 tháng 4 2018

Trả lời

a)  Vì p là số nguyên tố lớn hơn 3

\(\Rightarrow\)p có dạng 3k+1 hoặc 3k+2 (k\(\in\)N*)

Với p=3k+1 \(\Rightarrow p+4=3k+1+4=3k+5\)là  SNT => chọn

Với p=3k+2 \(\Rightarrow p+4=3k+2+4=3k+6\) chia hết cho 3 và lớn hơn 3

                    \(\Rightarrow\)p+4 là hợp số => Loại

\(\Rightarrow\)p=3k+1 thì \(p+8=3k+1+8=3k+9\)=> p+8 là hợp số => Chọn

b)Ta có abcd=1000a+100b+10c+d

                     =1000a+96b+8c+(4b+2c+d)

Ta thấy: 1000a chia hết cho 8

              96b chia hết cho 8

              8c chia hết cho 8

Theo đề ra ta có: 4b+2c+d chia hết cho 8

=> 1000a+96b+8c+(4b+2c+d) chia hết cho 8

=> abcd chia hết cho 8

Vậy nếu (d+2c+4b) chia hết cho 8 thì abcd chia hết cho 8

           

3 tháng 4 2018

  Câu 1:Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số. 

b, chịu

31 tháng 10 2016

1.

a) \(A=2+\frac{1}{n-2}\)

\(A\in Z\Rightarrow n-2\in U\left(1\right)=\left\{-1,1\right\}\Rightarrow n\in\left\{1;3\right\}\)

b) Gọi \(d=ƯC\left(2n-3;n-2\right)\)

\(\Rightarrow\begin{cases}2n-3⋮d\\n-2⋮d\end{cases}\)

\(\Rightarrow\begin{cases}2n-3⋮d\\2\left(n-2\right)⋮d\end{cases}\)

\(\Rightarrow2n-3-2\left(n-2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

Vậy A là phân số tối giản.

2.

- Từ giả thiết ta có \(P=3k+1\) hoặc \(P=3k+2\) ( \(k\in N\)* )

- Nếu \(P=3k+2\) thì \(P+4=3k+6\) là hợp số ( loại )

- Nếu \(P=3k+1\) thì \(P-2014=3k-2013\) chia hết cho 3

Vậy p - 2014 là hợp số

31 tháng 10 2016

Cám ơn mày nha Trân

3 tháng 6 2018

Câu 1:

\(C=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)+\left(1+\frac{1}{3.5}\right)+...\left(1+\frac{1}{2014.2016}\right)\)

\(\Rightarrow C=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{2015.2015}{2014.2016}\)

\(\Rightarrow C=\frac{4.9.16...2015.2015}{3.8.15...2014.2016}\)

\(\Rightarrow C=\frac{2.2.3.3.4.4...2015.2015}{1.3.2.4...2014.2016}\)

\(\Rightarrow C=\frac{2.3.4...2015.2.3.4...2015}{1.2.3...2014.3.4.5...2016}\)

\(\Rightarrow C=\frac{2015}{1008}.\)

Vậy \(C=\frac{2015}{1008}.\)

Câu 2:

Do p là số nguyên tố lớn hơn 3 nên p có dạng \(3k+1\)hoặc\(3k+2\)

+ Nếu \(p=3k+1\Rightarrow p^2-1=\left(3k+1\right)^2-1\)

                                                      \(=9k^2+3k+3k+1-1\)

                                                      \(=9k^2+6k⋮3.\)( 1 )

+ Nếu \(p=3k+2\Rightarrow p^2-1=\left(3k+2\right)^2-1\)

                                                      \(=9k^2+6k+6k+4-1\)

                                                        \(=9k^2+12k+3⋮3\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow p^2-1⋮3\left(đpcm\right).\)

Câu 3:

\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}>1000^{10}=10^{30}.\)( 1 )

\(2^{100}=2^{31}.2^6.2^{63}=2^{31}.64.512^7< 2^{31}.125.625^7=2^{31}.5^{31}=\)\(10^{31}.\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow10^{30}< 2^{100}< 10^{31}.\)

\(\Rightarrow\)2100  khi viết trong hệ thập phân có 31 chữ số.

                                           Đáp số: 31 chữ số.

3 tháng 6 2018

Câu 1 : 

C = (1 + 1/1.3)(1 + 1/2.4)(1 + 1/3.5) .... (1 + 1/2014.2016) 

C = (1.3/1.3 + 1/1.3) (2.4/2.4 + 1/2.4) ... (2014.2016/2014.2016 + 1/2014.2016) 

C =  2.2/1.3 * 3.3/2.4 * ... * 2015.2015/2014.2016 

C = 2.3....2015/1.2....2014 * 2.3....2015/3.4....2016 

C = 2015 * 1/1008

C = 2015/1008

7 tháng 2 2019

1.

- SNT > 3 => P = 3k+1 hoặc P = 3k + 2 ( k E N*)

- Nếu P = 3k+2 thì P + 4 = 3k+6 là hợp số ( loại )

- Nếu P = 3k+1 thì P - 2014 = 3k - 2013 chia hết cho 3 

Vậy p - 2014 là hợp số ( dpcm )

2 tháng 10 2020

1. 

a) \(3^{23}< 5^{15}\)

b) \(127^{23}< 128^{23}=\left(2^7\right)^{23}=2^{161}\)

\(513^{18}>512^{18}=\left(2^9\right)^{18}=2^{162}\)

Vì \(162>161\Rightarrow2^{161}< 2^{162}\Rightarrow127^{23}< 513^{18}\)

2 tháng 10 2020

2. Ta có: 

\(5^{27}=5^{3.9}=\left(5^3\right)^9=125^9< 128^9=2^{7.9}=\left(2^7\right)^9=2^{63}\)

\(\Rightarrow5^{27}< 2^{63}\left(1\right)\)

Lại có: \(2^{63}< 2^{64}=2^{16.4}=\left(2^{16}\right)^4=65536^4< 78125^4=5^{7.4}=\left(5^7\right)^4=5^{28}\)

\(\Rightarrow2^{63}< 2^{64}< 5^{28}\Rightarrow2^{63}< 5^{28}\left(2\right)\)

Từ 1 và 2 => đpcm

30 tháng 1 2020

a, Số dư luôn <3