K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 5 2021

Qua D kẻ đường thẳng song song AC cắt BA kéo dài tại E

\(\Rightarrow BE=2BA=2a\)

\(AC||DE\Rightarrow AC||\left(SDE\right)\Rightarrow d\left(AC;SD\right)=d\left(AC;\left(SDE\right)\right)=d\left(A;\left(SDE\right)\right)\)

\(AE=AD=a\Rightarrow\Delta ADE\) vuông cân tại A

Gọi I là trung điểm DE \(\Rightarrow AI\perp DE\Rightarrow DE\perp\left(SAI\right)\)

Trong mp (SAI), kẻ \(AJ\perp SI\Rightarrow AJ\perp\left(SDE\right)\Rightarrow AJ=d\left(A;\left(SDE\right)\right)\)

\(AI=\dfrac{AD}{2}=\dfrac{\sqrt{AE^2+AD^2}}{2}=\dfrac{a\sqrt{2}}{2}\)

\(\dfrac{1}{AJ^2}=\dfrac{1}{AI^2}+\dfrac{1}{SA^2}\Rightarrow AJ=\dfrac{AI.SA}{\sqrt{AI^2+SA^2}}=\dfrac{a\sqrt{3}}{3}\)

NV
21 tháng 12 2022

a.

Trong tam giác A'BC ta có: I là trung điểm BA', M là trung điểm BC

\(\Rightarrow IM\) là đường trung bình tam giác A'BC

\(\Rightarrow IM||A'C\)

\(\Rightarrow IM||\left(ACC'A'\right)\)

Do \(A\in\left(AB'M\right)\cap\left(ACC'A'\right)\) và \(\left\{{}\begin{matrix}IM\in\left(AB'M\right)\\A'C\in\left(ACC'A'\right)\\IM||A'C\end{matrix}\right.\)

\(\Rightarrow\) Giao tuyến của (AB'M) và (ACC'A') là đường thẳng qua A và song song A'C

Qua A kẻ đường thẳng d song song A'C

\(\Rightarrow d=\left(AB'M\right)\cap\left(ACC'A'\right)\)

b.

I là trung điểm AB', E là trung điểm AM

\(\Rightarrow IE\) là đường trung bình tam giác AB'M \(\Rightarrow IE||B'M\) (1)

Tương tự ta có IN là đường trung bình tam giác AA'B' \(\Rightarrow IN||A'B'\) (2)

(1);(2) \(\Rightarrow\left(EIN\right)||\left(A'B'M\right)\)

 

NV
21 tháng 12 2022

c.

Trong mp (BCC'B'), qua K kẻ đường thẳng song song B'M lần lượt cắt BC và B'C' tại D và F

\(DF||B'M\Rightarrow DF||IE\Rightarrow DF\subset\left(EIK\right)\)

Trong mp (ABC), nối DE kéo dài cắt AB tại G

\(\Rightarrow G\in\left(EIK\right)\)

Trong mp (A'B'C'), qua F kẻ đường thẳng song song A'C' cắt A'B' tại H

Do IK là đường trung bình tam giác A'BC' \(\Rightarrow IK||A'B'\)

\(\Rightarrow FH||IK\Rightarrow H\in\left(EIK\right)\)

\(\Rightarrow\) Tứ giác DFHG là thiết diện (EIK) và lăng trụ

Gọi J là giao điểm BK và B'M \(\Rightarrow J\) là trọng tâm tam giác B'BC

\(\Rightarrow\dfrac{BJ}{BK}=\dfrac{2}{3}\)

Áp dụng talet: \(\dfrac{BM}{BD}=\dfrac{BJ}{BK}=\dfrac{2}{3}\Rightarrow BD=\dfrac{3}{2}BM=\dfrac{3}{2}.\dfrac{1}{2}BC=\dfrac{3}{4}BC\)

\(\Rightarrow MD=\dfrac{1}{4}BC=\dfrac{1}{2}CM\Rightarrow D\) là trung điểm CM

\(\Rightarrow DE\) là đường trung bình tam giác ACM

\(\Rightarrow DE||AC\Rightarrow DE||FH\)

\(\Rightarrow\) Thiết diện là hình thang

NV
16 tháng 11 2021

Do vai trò của 3 biến là như nhau, không mất tính tổng quát giả sử \(x>y>z\)

Ta có: \(x-z=\left(x-y\right)+\left(y-z\right)\)

Đặt \(\left\{{}\begin{matrix}x-y=a>0\\y-z=b>0\end{matrix}\right.\)  

Do \(x;z\in\left[0;2\right]\Rightarrow x-z\le2\) hay \(a+b\le2\)

Ta có:

\(P=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\ge\dfrac{1}{2}\left(\dfrac{4}{a+b}\right)^2+\dfrac{1}{\left(a+b\right)^2}\)

\(P\ge\dfrac{9}{\left(a+b\right)^2}\ge\dfrac{9}{2^2}=\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b\\a+b=2\\\end{matrix}\right.\) \(\Rightarrow a=b=1\) hay \(\left(x;y;z\right)=\left(0;1;2\right)\) và các hoán vị

16 tháng 11 2021

thầy ơi cho em hỏi:

chỗ dấu >= đầu tiên là thầy dùng bđt bunhacoxki đúng không thầy

NV
10 tháng 7 2021

a.

\(90^0< a< 180^0\Rightarrow cosa< 0\)

\(\Rightarrow cosa=-\sqrt{1-sin^2a}=-\dfrac{2\sqrt{2}}{3}\)

\(tana=\dfrac{sina}{cosa}=-\dfrac{\sqrt{2}}{4}\)

b.

\(0< a< 90^0\Rightarrow cosa>0\)

\(\Rightarrow cosa=\sqrt{1-sin^2a}=\dfrac{4}{5}\)

\(tana=\dfrac{sina}{cosa}=\dfrac{3}{4}\)

\(cota=\dfrac{1}{tana}=\dfrac{4}{3}\)

NV
10 tháng 7 2021

c.

\(A=\dfrac{\dfrac{sina}{cosa}+\dfrac{3cosa}{sina}}{\dfrac{sina}{cosa}+\dfrac{cosa}{sina}}=\dfrac{sin^2a+3cos^2a}{sin^2a+cos^2a}=1+2cos^2a=\dfrac{17}{8}\)

d.

\(A=\dfrac{\dfrac{cosa}{sina}+\dfrac{3sina}{cosa}}{\dfrac{2cosa}{sina}+\dfrac{sina}{cosa}}=\dfrac{cos^2a+3sin^2a}{2cos^2a+sin^2a}=\dfrac{cos^2a+3\left(1-cos^2a\right)}{2cos^2a+\left(1-cos^2a\right)}\)

\(=\dfrac{3-2cos^2a}{1+cos^2a}=\dfrac{19}{13}\)

3 tháng 10 2021

2sin^2(2x+pi/3)-6sin(x+pi/6)+cos(x+pi/6)+2=0

1: (SBD) và (SBC) cùng vuông góc (ABCD)

=>SB vuông góc BC và SB vuông góc AB

=>ΔSAB vuông tại B, ΔSBC vuông tại B

CD vuông góc SB

CD vuông góc BC

=>CD vuông góc (SBC)

=>CD vuông góc CS

=>ΔCSD vuông tại C

AD vuông góc BD

=>AD vuông góc SB

=>AD vuông góc (SBD)

=>AD vuông góc SD
=>ΔSDA vuông tại D

b: BCDE là hình vuông

=>CE vuông góc BD

mà CE vuông góc SB

nên CE vuông (SBD)

=>(SCE) vuông góc (SBD)

3: Kẻ BM//CE(M thuộc CD)

CE vuông góc SD

=>BM vuông góc SD

Kẻ MP vuông góc SD cắt SC tại N

=>BN vuông góc SD

Xét (SCE) kẻ NQ'//CE(Q' thuộc SE)

=>NQ' vuông góc SD

Kẻ BQ' cắt SA tại F

=>Thiết diện cần tìm là BNPF

NV
20 tháng 12 2022

Không gian mẫu: \(C_{100}^5\)

Trong 100 số từ 1 tới 100 có 50 số chẵn và 50 số lẻ

Để tổng 5 số là 1 số chẵn ta có các trường hợp: (5 số đều chẵn), (1 số chẵn 4 số lẻ), (3 số chẵn 2 số lẻ)

\(\Rightarrow C_{50}^5+C_{50}^1C_{50}^4+C_{50}^3C_{50}^2\) trường hợp thỏa mãn

Xác suất: \(P=\dfrac{C_{50}^5+C_{50}^1C_{50}^4+C_{50}^3C_{50}^2}{C_{100}^5}=...\)

21 tháng 11 2023

A B C D E F M N O I K

Câu 7:

Xét hình bình hành ABCD, gọi O là giao của AC và BD

\(OB=OD=\dfrac{BD}{2}\Rightarrow BD=2OB\) (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Ta có

\(BN=\dfrac{1}{3}BD\left(gt\right)\Rightarrow BN=\dfrac{1}{3}.2OB=\dfrac{2}{3}OB\) 

Xét hbh ABEF, gọi I là giao của AE và BF ta có

\(IA=IE=\dfrac{AE}{2}\Rightarrow AE=2IA\) (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Ta có

\(AM=\dfrac{1}{3}AE\left(gt\right)\Rightarrow AM=\dfrac{1}{3}.2IA=\dfrac{2}{3}IA\) (1)

Xét tg ABF có

\(IB=IF\) (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)  => IA là trung tuyến của tg ABF (2)

Từ (1) và (2) => M là trọng tâm của tg ABF

Gọi K là giao của BM với AF => BK là trung tuyến của tg ABF

\(\Rightarrow BM=\dfrac{2}{3}BK\)

Xét tg BOK có

\(BN=\dfrac{2}{3}OB\left(cmt\right)\Rightarrow\dfrac{BN}{OB}=\dfrac{2}{3}\)

\(BM=\dfrac{2}{3}BK\left(cmt\right)\Rightarrow\dfrac{BM}{BK}=\dfrac{2}{3}\)

\(\Rightarrow\dfrac{BN}{OB}=\dfrac{BM}{BK}=\dfrac{2}{3}\) => MN//OK (Talet đảo trong tam giác) (3)

Xét tg ACF có

BK là trung tuyến của tg ABF (cmt) => KA=KF

Ta có

OA=OC (trong hbh 2 đường chéo cắt nhau tại trung điểm mỗi đường)

=> OK là đường trung bình của tg ACF => OK//CF (4)

Từ (3) và (4) => MN//CF

mà \(CF\in\left(DCEF\right)\)

=> MN//(DCEF)

 

 

 

20 tháng 12 2021

Trong mp (ABCD), nối AN kéo dài cắt BC kéo dài tại E

⇒E∈(SBC)⇒E∈(SBC)

Do AD song song BE, áp dụng Talet:

ANNE=NDNC=1⇒AN=NE⇒ANNE=NDNC=1⇒AN=NE⇒ N là trung điểm AE

⇒MN⇒MN là đường trung bình tam giác SAE

⇒MN//SE⇒MN//(SBC)