Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Xét tam giác abc và tam giác dbe có:
\(\widehat{b}\): góc chung
ab = bd (gt)
\(\widehat{bac}\)= \(\widehat{bde}\)( = 90 độ )
Vậy: tam giác abc = tam giac dbe
a: Xét ΔABE vuông tại A và ΔDBE vuông tại D có
BE chung
\(\widehat{ABE}=\widehat{DBE}\)
Do đó: ΔABE=ΔDBE
b: Ta có: ΔABE=ΔDBE
=>BA=BD và EA=ED
Ta có: BA=BD
=>B nằm trên đường trung trực của AD(1)
Ta có: EA=ED
=>E nằm trên đường trung trực của AD(2)
Từ (1) và (2) suy ra BE là đường trung trực của AD
=>BE\(\perp\)AD
c: Xét ΔEAF vuông tại A và ΔEDC vuông tại D có
EA=ED
\(\widehat{AEF}=\widehat{DEC}\)(hai góc đối đỉnh)
Do đó: ΔEAF=ΔEDC
=>EF=EC
=>ΔEFC cân tại E
tam giác ABC vuông tại A (gt)
=> góc B + góc C = 90
mà góc B = 60
=> góc C = 30
=> góc C < góc B xét tam giác ABC
=> AB < AC (đl)
tgiac ABC vuông ở , B=60¤=> C=30¤
=>AC>AB vì
AC là cạnh đối diện với góc lớn hơn (60¤)
AB.......................................nhở hơn (30¤)..
cau 1 :
A B C E
Xet tam giac ABD va tam giac EBD co : BD chung
goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)
AB = BE (Gt)
=> tam giac ABD = tam giac EBD (c - g - c)
=> goc BAC = goc DEB (dn)
ma goc BAC = 90 do tam giac ABC vuong tai A (gt)
=> goc DEB = 90
=> DE _|_ BC (dn)
b, tam giac ABD = tam giac EBD (cau a)
=> AB = DE (dn)
AB = 6 (cm) => DE = 6 cm
DE _|_ BC => tam giac DEC vuong tai E
=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)
=> CE2 = 102 - 62
=> CE2 = 64
=> CE = 8 do CE > 0
Câu 4:
a) Xét 2 tam giác vuông ΔABD và ΔEBD ta có:
Cạnh huyền BD: chung
\(\widehat{ABD}=\widehat{EBD}\left(GT\right)\)
=> ΔABD = ΔEBD (c,h - g,n)
=>AD = ED (2 cạnh tương ứng)
b) Có: ΔABD = ΔEBD (câu a)
=> AB = BE (2 cạnh tương ứng)
=> BAE cân tại B
c) ΔABD = ΔEBD (câu a)
=> \(\widehat{BAD}=\widehat{BED}\) (2 góc tương ứng)
=> \(\widehat{BED}=90^0\)
=> DE ⊥ BE
Hay: DE ⊥ BC
Xét ΔADI và ΔEDC ta có:
\(\widehat{IAD}=\widehat{DEC}\left(=90^0\right)\)
AD = ED (câu a)
\(\widehat{IDA}=\widehat{EDC}\) (đối đỉnh)
=> ΔADI = ΔEDC (g - c -g)
=> AI = EC (2 góc tương ứng)
Xét 2 tam giác vuông ΔAIC và ΔECI ta có:
Cạnh huyền CI chung
AI = EC (cmt)
=> ΔAIC = ΔECI (cạnh huyền - cạnh góc vuông)