K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=\dfrac{x+2}{x}\cdot\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x-2}\)

b: \(B=\dfrac{2x-6+3x+9-5x+2}{\left(x-3\right)\left(x+3\right)}=\dfrac{5}{x^2-9}\)

1 tháng 4 2018

a. x(2x2 – 3) – x2(5x + 1) + x2

      = 2x3 – 3x – 5x3 – x2 + x2 = -3x – 3x3

b. 3x(x – 2) – 5x(1 – x) – 8(x2 – 3)

      = 3x2 – 6x – 5x + 5x2 – 8x2 + 24

      = - 11x + 24

c. 1/2 x2(6x – 3) – x( x2 + 1/2 (x + 4)

      = 3x3 - 3/2 x2 – x3 - 1/2 x + 1/2 x + 2

      = 2x3 - 3/2 x2 + 2

1 tháng 4 2018

a, x(2x2-3)-x2(5x+1)x2

=2x3-3x-5x3- x2+x2=-3x-3x3

học tốt nhé!!

4 tháng 12 2016

Câu 1 :

(x2 + 7x + 10) : (x+2) = x+5

Câu 2 :

a\ x2 - 9 + y2 - 2xy

= (x2 - 2xy + y2) - 9

= (x - y)2 - 9

= (x - y - 3)(x - y + 3)

b\ 10x + x2 + 21

= x2 + 3x + 7x + 21

= x(x + 3) + 7(x + 3)

= (x + 3)(x + 7)

 Bài 3 :

a\ \(\frac{x^2}{x^2+1}-\frac{2x}{x^2+1}+\frac{1}{x^2+1}\)

\(\frac{x^2-2x+1}{x^2+1}\)

\(\frac{ \left(x+1\right)^2}{x^2+1}\)

b\

4 tháng 12 2016

cảm ơn bạn nhiều nha <3 ^-^

Câu 4:

a: Sửa đề: E đối xứng D qua O

Xét tứ giác ADCE có

O là trung điểm chung của AC và DE

=>ADCE là hình bình hành

Hình bình hành ADCE có \(\hat{ADC}=90^0\)

nên ADCE là hình chữ nhật

b:

ADCE là hình chữ nhật

=>AE//CD và AE=CD

ΔABC cân tại A

mà AD là đường cao

nên D là trung điểm của BC

=>DB=DC

mà DC=AE
nên DB=AE

Vì AE//CD

nên AE//BD

Xét tứ giác AEDB có

AE//DB

AE=DB

Do đó: AEDB là hình bình hành

=>AD cắt BE tại trung điểm của mỗi đường

mà I là trung điểm của AD

nên I là trung điểm của BE

c: D là trung điểm của BC

=>\(DB=DC=\frac{BC}{2}=\frac{12}{2}=6\left(\operatorname{cm}\right)\)

ΔADB vuông tại D

=>\(AD^2+DB^2=AB^2\)

=>\(AD^2=10^2-6^2=64=8^2\)

=>AD=8(cm)

ΔABC có AD là đường cao

nên \(S_{ABC}=\frac12\cdot AD\cdot BC=\frac12\cdot8\cdot12=4\cdot12=48\left(\operatorname{cm}^2\right)\)

O là trung điểm của AC

=>\(S_{BOA}=\frac12\cdot S_{BAC}=\frac{48}{2}=24\left(\operatorname{cm}^2\right)\)

Câu 3:

a: ĐKXĐ của A là x<>4

\(x^2-3x=0\)

=>x(x-3)=0

=>\(\left[\begin{array}{l}x=0\\ x-3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=3\end{array}\right.\)

Thay x=0 vào A, ta được:

\(A=\frac{0-5}{0-4}=\frac{-5}{-4}=\frac54\)

Thay x=3 vào A, ta được:

\(A=\frac{3-5}{3-4}=\frac{-2}{-1}=2\)

b: \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)

\(=\frac{x+5}{2x}+\frac{x-6}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}\)

\(=\frac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)

\(=\frac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}=\frac{x^2-10x+25}{2x\left(x-5\right)}\)

\(=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)

c: Đặt P=A:B

\(=\frac{x-5}{x-4}:\frac{x-5}{2x}\)

\(=\frac{x-5}{x-4}\cdot\frac{2x}{x-5}=\frac{2x}{x-4}\)

Để P là số nguyên thì 2x⋮x-4

=>2x-8+8⋮x-4

=>8⋮x-4

=>x-4∈{1;-1;2;-2;4;-4;8;-8}

=>x∈{5;3;6;2;8;0;12;-4}

Kết hợp ĐKXĐ, ta được:x∈{3;6;2;8;12;-4}

Bài 1:

a: \(6x^2-3xy=3x\cdot2x-3x\cdot y=3x\left(2x-y\right)\)

b: \(x^2-y^2-6x+9\)

\(=x^2-6x+9-y^2\)

\(=\left(x-3\right)^2-y^2\)

=(x-3-y)(x-3+y)

c: \(x^2+5x-6\)

\(=x^2-x+6x-6\)

=x(x-1)+6(x-1)

=(x-1)(x+6)

Bài 2:

a: Sửa đề: \(\left(x+2\right)^2-\left(x-3\right)\left(x+1\right)\)

\(=x^2+4x+4-\left(x^2-2x-3\right)\)

\(=x^2+4x+4-x^2+2x+3\)

=6x+7

b: \(\left(x^3-2x^2+5x-10\right):\left(x-2\right)\)

\(=\frac{x^2\left(x-2\right)+5\left(x-2\right)}{x-2}\)

\(=x^2+5\)

NV
8 tháng 3 2020

Bài 1

a/ \(x\left(x^2+1\right)+2\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+1\right)=0\Rightarrow x=-2\)

b/

\(\Leftrightarrow x^3-6x^2+9x+5x^2-30x+45=0\)

\(\Leftrightarrow x\left(x-3\right)^2+5\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-3\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=3\end{matrix}\right.\)

NV
8 tháng 3 2020

1.

c/ \(\Leftrightarrow x^3+2x^2+2x+x^2+2x+2=0\)

\(\Leftrightarrow x\left(x^2+2x+2\right)+x^2+2x+2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^2+2x+2=0\left(vn\right)\end{matrix}\right.\)

d/

\(\Leftrightarrow x^4+x^3-2x^2-x^3-x^2+2x+4x^2+4x-8=0\)

\(\Leftrightarrow x^2\left(x^2+x-2\right)-x\left(x^2+x-2\right)+4\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x^2-x+4\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+4=0\left(vn\right)\\x^2+x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

29 tháng 11 2021

bruh

 

25 tháng 3 2020

Bài 1:

a) (3x - 2)(4x + 5) = 0

<=> 3x - 2 = 0 hoặc 4x + 5 = 0

<=> 3x = 2 hoặc 4x = -5

<=> x = 2/3 hoặc x = -5/4

b) (2,3x - 6,9)(0,1x + 2) = 0

<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

<=> 2,3x = 6,9 hoặc 0,1x = -2

<=> x = 3 hoặc x = -20

c) (4x + 2)(x^2 + 1) = 0

<=> 4x + 2 = 0 hoặc x^2 + 1 # 0

<=> 4x = -2

<=> x = -2/4 = -1/2

d) (2x + 7)(x - 5)(5x + 1) = 0

<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

<=> 2x = -7 hoặc x = 5 hoặc 5x = -1

<=> x = -7/2 hoặc x = 5 hoặc x = -1/5

13 tháng 12 2020

bài 2:

a, (3x+2)(x^2-1)=(9x^2-4)(x+1)

(3x+2)(x-1)(x+1)=(3x-2)(3x+2)(x+1)

(3x+2)(x-1)(x+1)-(3x-2)(3x+2)(x+1)=0

(3x+2)(x+1)(1-2x)=0

b, x(x+3)(x-3)-(x-2)(x^2-2x+4)=0

x(x^2-9)-(x^3+8)=0

x^3-9x-x^3-8=0

-9x-8=0

tự tìm x nha