K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2020

câu 29 cho 2x4 +x+2=0

denta = 1- 4.2.2 <0 => pt vô nghiệm

câu 30

P(x)= -2x3 +x2 +x -2

Q(x)= x4 +3x +1

23 tháng 6 2020

Câu 27 ; 

a. Vì tổng 2 cạnh sẽ lớn hơn cạnh còn lại trong một tam giác

Ta thấy  ;  10 + 10 = 20

\(\Rightarrow\)Sẽ ko có tam giác nào có độ dài ba cạnh là 10cm , 10cm , 20cm

b.Đề bài sai nha bạn

Bài 29

  \(2x^2+x^2+2=0\)

\(\Rightarrow2x^2+x^2\)  \(=-2\)

mà \(2x^2\ge0\)\(x^2\ge0\)

\(\Rightarrow\)\(2x^2+x^2+2\)ko có nghiệm

Bài 30

\(P(x)=2x^3-3x+x^5-4x^3+4x-x^5+x^2-2\)

          \(=(x^5-x^5)+(2x^3-4x^3)+x^2+(-3x+4x)-2\)

           \(=-2x^3+x^2+x-2\)

Bậc của đa thức \(P(x)=3\)

\(Q(x)=x^4-2x^2+3x+1+2x^2\)

           \(=x^4+(-2x^2+2x^2)+3x+1\)

           \(=x^4+3x+1\)

Bậc của đa thức \(Q(x)=4\)

học tốt

KẾT BẠN VỚI  MÌNH NHÉ

10 tháng 4 2020

dsssws

1 tháng 5 2019

a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)

 \(=2x^4+7x^3-2x^2+2x+6\)

\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)

\(=-2x^4-10x^3+6x^2-2x-4\)

b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)

                                      \(=-3x^3+4x^2+2\)

21 tháng 8 2018

a. Ta có: A(x) = x5 + x2 + 5x + 6 - x5 - 3x - 5

= x2 + 2x + 1 (0.5 điểm)

B(x) = x4 + 2x2 - 3x - 3 - x4 - x2 + 3x + 4 = x2 + 1 (0.5 điểm)

18 tháng 8 2017

Ta có

P ( x ) = 2 x 3 − 3 x + x 5 − 4 x 3 + 4 x − x 5 + x 2 − 2 = x 5 − x 5 + 2 x 3 − 4 x 3 + x 2 + ( 4 x − 3 x ) − 2 = − 2 x 3 + x 2 + x − 2  Và  Q ( x ) = x 3 − 2 x 2 + 3 x + 1 + 2 x 2 = x 3 + − 2 x 2 + 2 x 2 + 3 x + 1 = x 3 + 3 x + 1

Khi đó

M ( x ) = P ( x ) + Q ( x ) = − 2 x 3 + x 2 + x − 2 + x 3 + 3 x + 1 = − 2 x 3 + x 2 + x − 2 + x 3 + 3 x + 1 = − 2 x 3 + x 3 + x 2 + ( x + 3 x ) − 2 + 1 = − x 3 + x 2 + 4 x − 1

Bậc của  M ( x )   =   - x 3   +   x 2   +   4 x   -   1   l à   3

Chọn đáp án C

Mình xp giúp được mỗi câu đầu thôi nha ;-;;;; 2 câu sau mình chưa học, bạn thông cảm ;-;;;.

`a,` \(\text{P(x) =}\)\(2x^3-3x+x^5-4x^3+4x-x^5+x^2-2\)

`P(x)= (2x^3 - 4x^3)-(3x-4x) +(x^5-x^5) +x^2-2`

`P(x)= -2x^3- (-x)+0+x^2-2`

`P(x)=-2x^3+x+x^2-2`

`Q(x)= x^3-x^2+3x+1+3x^2`

`Q(x)= x^3- (x^2-3x^2) +3x+1`

`Q(x)=x^3- (-2x^2)+3x+1`

 

AH
Akai Haruma
Giáo viên
13 tháng 5 2023

Lời giải:

a.

$A(x)=-x^5-7x^4-2x^3+x^2+4x+9$

$B(x)=x^5+7x^4+2x^3+2x^2-3x-9$

b. 

$A(x)+B(x)=(-x^5-7x^4-2x^3+x^2+4x+9)+(x^5+7x^4+2x^3+2x^2-3x-9)$

$=(-x^5+x^5)+(-7x^4+7x^4)+(-2x^3+2x^3)+(x^2+2x^2)+(4x-3x)+(9-9)=3x^2+x$

$A(x)-B(x)=(-x^5-7x^4-2x^3+x^2+4x+9)-(x^5+7x^4+2x^3+2x^2-3x-9)$

$=(-x^5-x^5)+(-7x^4-7x^4)+(-2x^3-2x^3)+(x^2-2x^2)+(4x+3x)+(9+9)=-2x^5-14x^4-4x^3-x^2+7x+18$

21 tháng 6 2020

a. 

\(P(x)=3x^3-x^2-2x^4+3+2x^3+x+3x^4\)

\(=(-2x^4+3x^4)+(3x^3+2x^3)-x^2+x+3\)

\(=x^4+5x^3-x^2+x+3\)

\(Q(x)=-x^4+x^2-4x^3-2+2x^2-x-x^3\)

\(=-x^4+(-4x^3-x^3)+(x^2+2x^2)-x-2\)

\(=-x^4-5x^3+3x^2-x-2\)

b. 

\(P(x)+Q(x)=(x^4+5x^3-x^2+x+3)+(-x^4-5x^3+3x^2-x-2)\)

\(=(x^4-x^4)+(5x^3-5x^3)+(-x^2+3x^2)+(x-x)+(3-2)\)

\(=2x^2+1\)

c.\(H(x)=Q(x)+P(x)\)
\(\Rightarrow H(x)=2x^2+1=0\)

\(\Rightarrow2x^2+1=0\)

     \(2x^2\)      \(=-1\)

         \(x^2\)      \(=\frac{-1}{2}\)  

mà \(x^2\ge0\)

\(\Rightarrow\)Đa thức \(H(x)=P(x)+Q(x)\)ko có nghiệm

học tốt

Nhớ kết bạn với mình đó

a: \(M\left(x\right)=9x^4+2x^2-x-6\)

\(N\left(x\right)=-x^4-x^3-2x^2+4x+1\)

b: \(P\left(x\right)=8x^4-x^3+3x-5\)

\(Q\left(x\right)=10x^4+x^3+4x^2-5x-7\)

ko bt làm=))