Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AHCK có
D là trung điểm chung của AC và HK
=>AHCK là hình bình hành
Hình bình hành AHCK có \(\widehat{AHC}=90^0\)
nên AHCK là hình chữ nhật
b: Xét ΔABC có
E,D lần lượt là trung điểm của AB,AC
=>ED là đường trung bình của ΔABC
=>ED//BC và \(ED=\dfrac{BC}{2}\)
Ta có: ED//BC
I\(\in\)BC
Do đó: ED//IC
Ta có: ED=BC/2
IC=BC/2
Do đó: ED=IC
Xét tứ giác EDCI có
ED//CI
ED=CI
Do đó: EDCI là hình bình hành
c: Ta có: ΔAHC vuông tại H
mà HD là đường trung tuyến
nên DH=DC
mà DC=EI(EDCI là hình bình hành)
nên DH=EI
Xét tứ giác EDIH có ED//IH
nên EDIH là hình thang
Hình thang EDIH có DH=EI
nên EDIH là hình thang cân
a: Xét ΔABC có
BE/BC=BD/BA
nên ED//AC và ED=AC/2
=>ED//AF và ED=AF
=>ADEF là hình bình hành
mà góc FAD=90 độ
nên ADEF là hình chữ nhật
b: Xét tứ giác BMAE có
D là trung điểm chung của BA vàME
EA=EB
Do đó: BMAE là hình thoi
c: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
S=1/2*3*4=6(cm2)
a: Xét ΔABC có
AM/AB=AN/AC
Do đó: MN//BC
hay BMNC là hình thang
mà BN=CM
nên BMNC là hình thang cân
\(c,\) Vì AD//BP và AD=BP nên ADPB là hbh
Do đó O là trung điểm AP và BD
Xét tam giác ADP có DO và AN là trung tuyến giao tại G nên G là trọng tâm
Do đó \(DG=\dfrac{2}{3}DO\)
Mà \(DO=\dfrac{1}{2}BD\Rightarrow DG=\dfrac{2}{3}\cdot\dfrac{1}{2}BD=\dfrac{1}{3}BD\)
Câu 5:
\(A=-x^2+x-1=-\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{3}{4}\\ A=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\left(đpcm\right)\)
cho tam giác ABC cân tại A. Gọi M, N, H lần lượt là trung điểm của AB, AC, BC.
a) Chứng minh : Tứ giác MNCB là hình thang cân.
b) Gọi D là điểm đối xứng của H qua N. Các tứ giác AHCD, ADNM là hình gì? Vì sao?
c) Chứng minh : N là trọng tâm của tam giác CMD.
d) MD cắt AC tại E. Chứng minh : BN đi qua trung điểm của HE.
a: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của ME
Do đó:AEBM là hình bình hành
Suy ra: AM//BE và AM=BE
=>AM//CE và AM=CE
hay ACEM là hình bình hành
b: Xét hình bình hành AMBE có \(\widehat{AEB}=90^0\)
nên AMBE là hình chữ nhật
c: BC=12cm
=>BE=6cm
\(S_{AEB}=\dfrac{BE\cdot AE}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
a) Xét tứ giác AMBE có
D là trung điểm của đường chéo AB(gt)
D là trung điểm của đường chéo ME(M và E đối xứng nhau qua D)Do đó: AMBE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: AMBE là hình bình hành(cmt)
nên AM//BE và AM=BE(Hai cạnh đối của hình bình hành AMBE)
mà \(C\in EB\) và EB=EC(E là trung điểm của BC)
nên AM//CE và AM=CE
Xét tứ giác AMEC có
AM//CE(cmt)
AM=CE(cmt)
Do đó: AMEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Ta có: ΔABC cân tại A(gt)
mà AE là đường trung tuyến ứng với cạnh đáy BC(E là trung điểm của BC)
nên AE là đường cao ứng với cạnh BC(Định lí tam giác cân)
⇔AE⊥BC
hay \(\widehat{AEB}=90^0\)
Xét hình bình hành AMBE có \(\widehat{AEB}=90^0\)(cmt)
nên AMBE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
c) Ta có: E là trung điểm của BC(gt)
nên \(BE=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Ta có: ΔABE vuông tại E(\(\widehat{AEB}=90^0\))
nên \(S_{ABE}=\dfrac{AE\cdot EB}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)