Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có: OC=OA+AC
OD=OB+BD
Mà OA=OB và AC=BD (gt)
=>OC=OD
Xét Δ OAD và Δ OBC có:
OA=OB (gt)
ˆOO^ góc chung
OC=OD (cmt)
=> Δ OAD=Δ OBC (c.g.c)
=> AD=BC (2 cạnh tương ứng)
Δ OAD=Δ OBC (cmt)
=> ˆD=ˆCD^=C^ và ˆA1=ˆB1A1^=B1^ (2 góc tương ứng)
Mà ˆA1+ˆA2=ˆB1+ˆB2A1^+A2^=B1^+B2^= 1800 (kề bù)
=> ˆA2=ˆB2A2^=B2^
Δ EAC và Δ EBD có:
ˆC=ˆDC^=D^ (cmt)
AC=BD (gt)
ˆA2=ˆB2A2^=B2^ (cmt)
=> Δ EAC= ΔEBD (g.c.g)
c) Δ EAC=ΔEBD (cmt)
=> EA=EB (2 cạnh tương ứng)
ΔOBE và Δ OAE có:
OB=OA (gt)
ˆB1=ˆA1B1^=A1^ (cmt)
EA=EB (cmt)
=>Δ OBE=Δ OAE (c.g.c)
=> ˆO1=ˆO2O1^=O2^ (2 góc tương ứng)
Vậy OE là phân giác ˆxO
![](https://rs.olm.vn/images/avt/0.png?1311)
a) áp dụng định lý Pytago cho tam giác ABC vuông tại A có:
AB2+AC2=BC2
=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=\sqrt{100-36}=\sqrt{64}=8\left(cm\right)\left(AC>0\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Huy Hoang tự vẽ hình nhé!
\(a,\) Xét \(\Delta MAC\) và \(\Delta MDC\) ta có:
+) \(MB=MC\) (AM là trung tuyến nên M là trung điểm của BC)
+) \(\widehat{AMB}=\widehat{DMC}\) (đối đỉnh)
+) \(MA=MB\left(gt\right)\)
\(\Rightarrow\Delta MAC=MDC\Rightarrow\widehat{BAM}=\widehat{CDM}\) Và \(CD=AB< AC\)
Trong \(\Delta ADC:AC< CD\Rightarrow\widehat{ADC}>\widehat{DAC}\left(dpcm1\right)\)
Vì \(\widehat{MAB}=\widehat{MDC}\Rightarrow\widehat{MAB}=\widehat{ADC}>\widehat{MAC}\)
\(\Rightarrow MAB>MAC\)
b, AH vuông với BC tại H
=> H là hình chiếu của A trên BC
HB là đường chiếu tương ứng của đường xiên AB
HC là đường chiếu tương ứng của đường xiên AC
Mà \(AB< AC\Rightarrow HB< HC\left(dpcm3\right)\)
Mặt khác E thuộc AH => HB cũng là đường chiếu của đường xiên EB
HC là hình chiếu của đường xiên EC
Mà \(HB< HC\left(theodpcm3\right)\)
\(\Rightarrow EC< EB\left(dpcm4\right)\)
\(\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, theo pytago ta có:
AB2+AC2=BC2 <=> AC=\(\sqrt{10^2-6^2}\)=8 (cm)
so sánh: BAC>ABC>ACB vì BC>AC>AB
b, vì A là trung điểm BD nên CA là trung tuyến của tam giác DBC
mà CA\(\perp\)BD nên CA là đường cao của tam giác DBC
=> CA vừa là trung tuyến vừa là đường cao của tam giác DBC nên DBC cân ở C
![](https://rs.olm.vn/images/avt/0.png?1311)
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
a: Xet ΔAHB và ΔAHC có
AB=AC
góc BAH=góc CAH
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: Xét ΔAHB vuông tại H và ΔDHC vuông tại H có
HA=HD
HB=HC
=>ΔAHB=ΔDHC
=>góc HAB=góc HDC
=>AB//CD
c: Xét tứ giác ABCE có
M là trung điểm chung của AC và BE
=>ABCE là hình bình hành
=>AB//CE
mà CD//AB
nên C,E,D thẳng hàng