Câu 22: Cho tam giác ABC vuông...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 3 2023

Từ câu b ta có BC=IH

\(\Rightarrow\) Tứ giác BCHI là hình bình hành (cặp cạnh đối song song và bằng nhau)

\(\Rightarrow\) N là trung điểm BH và IC (2 đường chéo hbh cắt nhau tại trung điểm mỗi đường)

Lại có \(AI=AB\Rightarrow A\) là trung điểm BI

\(\Rightarrow G\) là trọng tâm tam giác BIH

\(\Rightarrow\dfrac{GN}{IN}=\dfrac{1}{3}\) theo tính chất trọng tâm

\(\Rightarrow GN=\dfrac{1}{3}IN=\dfrac{1}{3}.\dfrac{1}{2}IC=\dfrac{1}{6}IC\) (do N là trung điểm IC)

Theo câu a có \(\Delta CBI\) cân tại C \(\Rightarrow BC=IC\)

\(\Rightarrow GN=\dfrac{1}{6}BC\Rightarrow BC=6GN\)

2 tháng 4 2021

A B C D F E H I M N

a, Xét tam giác AFH và tam giác ADB ta có : 

^AFH = ^ADB = 900

^A _ chung 

Vậy tam giác AFH ~ tam giác ADB ( g.g )

b, Xét tam giác EHC và tam giác FHB ta có : 

^EHC = ^FHB ( đối đỉnh )

^CEH = ^BFH = 900

Vậy tam giác EHC ~ tam giác FHB ( g.g )

\(\Rightarrow\frac{EH}{FH}=\frac{HC}{HB}\Rightarrow EH.HB=HC.FH\)

c, 

2 tháng 4 2021

A B C D H E I P O M N

15 tháng 12 2021

sai hay đúng?

1.Đường thẳng đi qua hai trung điểm của hai cạnh đối diện của một tứ giác lồi tạo bởi hai đường chéo hai góc bằng nhau.Chứng minh tứ giác ấy có hai đường chéo bằng nhau. 2.Cho tam giác ABC(AB ≠ AC). Trên tia đối của các tia BA,CA lần lượt lấy các điểm D và E sao cho BD=CE. Gọi M,N lần lượt là trung điểm của DE và BC. Chứng minh rằng MN song song với tia phân giác của góc A3. Cho hình bình...
Đọc tiếp

1.Đường thẳng đi qua hai trung điểm của hai cạnh đối diện của một tứ giác lồi tạo bởi hai đường chéo hai góc bằng nhau.Chứng minh tứ giác ấy có hai đường chéo bằng nhau.

 

2.Cho tam giác ABC(AB ≠ AC). Trên tia đối của các tia BA,CA lần lượt lấy các điểm D và E sao cho BD=CE. Gọi M,N lần lượt là trung điểm của DE và BC. Chứng minh rằng MN song song với tia phân giác của góc A

3. Cho hình bình hành ABCD. Gọi d là đường thẳng qua A và không cắt đoạn thẳng BD. Gọi BB', CC', DD' lần lượt là khoảng cách từ B, C, D đến đường thẳng d (B', C', D' thuộc d). Chứng minh rằng BB' + DD' = CC'

4. Gọi P là trung điểm thuộc cạnh BC (PB khác PC), N là trung điểm của cạnh CD, Q là điểm thuộc cạnh AD (QA khác QD). Biết MNPQ là hình bình hành .CMR: 

giúp mk vs mk đg cần gấp

2

\(3.\)

Gọi O là giao điểm của AC và BD

ABCD là hình bình hành nên O là trung điểm của AC và BD

Vẽ \(OO'\perp d;O'\in d\)

Các đường thẳng \(BB';CC';DD';OO'\)song song với nhau vì cùng vuông góc với đường thẳng d

\(B'D'DB\)là hình thang (Vì \(BB'//DD'\)) có: \(OB=OD;OO'//BB'\)nên \(OO'\)là đường trung bình của hình thang \(B'D'DB\)\(OO'=\frac{1}{2}\left(BB'+DD'\right)\)(*)

Mặt khác \(\Delta ACC'\)\(OO'//CC';OA=OC\)

Nên OO' là đường trung bình của \(\Delta ACC'\)\(OO'=\frac{1}{2}CC'\)(**)

Từ (*) và (**) \(\Rightarrow BB'+DD'=CC'\)

O B' B A O' C' d D' C D

15 tháng 12 2021

TL:

a,G là trọng tâm của tam giác ABC nên GD =1/2 BG suy ra GM= GD

Tương tự EG=GN suy ra MNDE là hình bình hành

15 tháng 12 2021

a) Trong tam giác ABC , có :

EA = EB ( CE là trung tuyến )

DA = DC ( DB là trung tuyến )

=> ED là đường trung bình của tam giác ABC

=> ED // BC (1) , DE = 1/2 BC (2)

Trong tam giác GBC , có :

MG = MB ( gt)

NG = NC ( gt)

=> MN là đương trung bình của tam giác GBC

=> MN // BC (3) , MN = 1/2 BC (4)

Từ 1 và 2 => ED // MN ( * )

Từ 3 và 4 => ED = MN ( **)

Từ * và ** => EDMN là hbh ( DHNB )

21 tháng 4 2017

B A O M N C d E P I