K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2021

bài đâu bạn??

3 tháng 10 2021

cô biết

1: ĐKXĐ: 2-3x>=0

=>x<=2/3

2: ĐKXĐ: -3x^2>=0

=>x^2<=0

=>x=0

3: ĐKXĐ: -2023x^3>=0

=>x^3<=0

=>x<=0

4: ĐKXĐ: -2(x-5)>=0

=>x-5<=0

=>x<=5

5: ĐKXĐ: -5/2-2x>=0

=>2-2x<0

=>2x>2

=>x>1

6: ĐKXĐ: (x^2+1)(3-2x)>=0

=>3-2x>=0

=>-2x>=-3

=>x<=3/2

7: ĐKXĐ: (-x^2-1)(3-x)>=0

=>(x^2+1)(x-3)>=0

=>x-3>=0

=>x>=3

4 tháng 4 2023

Câu 3 :

\(1,\left\{{}\begin{matrix}\dfrac{3}{\sqrt{y-2}}+x-2y=5\\\dfrac{1}{\sqrt{y-2}}-2x+4y=4\end{matrix}\right.\) \(\left(ĐK:y>2\right)\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{\sqrt{y-2}}+x-2y=5\\\dfrac{1}{\sqrt{y-2}}-2\left(x-2y\right)=4\end{matrix}\right.\) Đặt : \(\left\{{}\begin{matrix}a=\dfrac{1}{\sqrt{y-2}}\\b=x-2y\end{matrix}\right.\)

Ta có Hpt trở thành : \(\left\{{}\begin{matrix}3a+b=5\\a-2b=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{y-2}}=2\\x-2y=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{y-2}=1\\x-2y=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{4}\\x-2.\dfrac{5}{4}=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{5}{4}\end{matrix}\right.\)

Vậy ....

\(2,x^2-\left(2m+1\right)+m^2-m+1=0\left(1\right)\)

a, Thay m = 2 vào pt (1) có : \(x^2-5x+3=0\) 

\(\Delta=5^2-4.3=13>0\Rightarrow\sqrt{\Delta}=\sqrt{13}\)

⇒ Phương trình có hai nghiệm phân biệt 

\(x_1=\dfrac{5+\sqrt{13}}{2};x_2=\dfrac{5-\sqrt{13}}{2}\)

Vậy \(S=\left\{\dfrac{5\pm\sqrt{13}}{2}\right\}\) khi \(m=2\)

b, Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)

\(\Rightarrow\left(2m+1\right)^2-4m^2+4m-4>0\Leftrightarrow4m^2+4m+1-4m^2+4m-4>0\Leftrightarrow8m-3>0\Leftrightarrow m>\dfrac{3}{8}\)

Vậy...

2:

Gọi số cần tìm là \(\overline{ab}\)

Theo đề, ta có: a-b=3 và a^2+b^2=45

=>a=b+3 và (b+3)^2+b^2=45

=>b=3

=>a=6

10 tháng 6 2021

câu 2 phần 2:

\(\left\{{}\begin{matrix}4x+3y=11\\4x-y=7\end{matrix}\right.\)\(< =>\left\{{}\begin{matrix}4y=4\\4x-y=7\end{matrix}\right.< =>\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\).Vậy hệ pt có nghiệm

(x,y)=(2;1)

caau3 phần 2:

\(x^2-2x+m-1=0\)(1)

\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m\)

để pt (1) có 2 nghiệm x1,x2<=>\(\Delta'\ge0< =>2-m\ge0< =>m\le2\)

theo vi ét=>\(\left\{{}\begin{matrix}x1+x2=2\left(1\right)\\x1.x2=m-1\left(3\right)\end{matrix}\right.\)

có: \(x1^4\)\(-x1^3=x2^4-x2^3\)

\(< =>x1^4-x2^4-x1^3+x2^3=0\)

\(< =>\left(x1^2-x2^2\right)\left(x1^2+x2^2\right)-\left(x1^3-x2^3\right)\)\(=0\)

\(< =>\left(x1-x2\right)\left(x1+x2\right)\left[\left(x1+x2\right)^2-2x1x2\right]\)\(-\left(x1-x2\right)\left(x1^2+x1x2+x^2\right)=0\)

\(< =>\)\(\left(x1-x2\right)\left[2.2^2-2\left(m-1\right)-\left(x1^2+x1x2+x2^2\right)\right]=0\)

\(< =>.\left(x1-x2\right)\left[8-2m+2-\left(x1+x2\right)^2+x1x2\right]=0\)

<=>\(\left(x1-x2\right)\left[10-2m-4+m-1\right]=0\)

\(< =>\left(x1-x2\right)\left(5-m\right)=0\)

\(=>\left[{}\begin{matrix}x1-x2=0\\5-m=0\end{matrix}\right.< =>\left[{}\begin{matrix}x1=x2\left(2\right)\\m=5\left(loai\right)\end{matrix}\right.\)

thế(2) vào(1)=>\(x1=x2=1\left(4\right)\)

thế (4) vào (3)=>\(m-1=1=>m=2\left(TM\right)\)

vậy m=2 thì....

 Câu 29. Chứng minh các bất đẳng thức:a) (a + b)2 ≤ 2(a2 + b2)b) (a + b + c)2 ≤ 3(a2 + b2 + c2)c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.Câu 31. Chứng minh rằng: [x] + [y] ≤ [x + y].Câu 32. Tìm giá trị lớn nhất của biểu thức: Câu 33. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.Câu 36. Xét xem các số a và b có thể là số vô tỉ không nếu:a) ab và a/b là số vô tỉ.b) a + b và a/b là số...
Đọc tiếp

 

Câu 29. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

Câu 31. Chứng minh rằng: [x] + [y] ≤ [x + y].

Câu 32. Tìm giá trị lớn nhất của biểu thức: 

Câu 33. Tìm giá trị nhỏ nhất của:  với x, y, z > 0.

Câu 36. Xét xem các số a và b có thể là số vô tỉ không nếu:

a) ab và a/b là số vô tỉ.

b) a + b và a/b là số hữu tỉ (a + b ≠ 0)

c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)

Câu 37. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 38. Cho a, b, c, d > 0. Chứng minh:

Câu 39. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1

Câu 40. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

Câu 41. Tìm các giá trị của x để các biểu thức sau có nghĩa:

                             Mn giúp em với ;-;

0
9 tháng 10 2020

Câu 1:

\(a^2+2ab+b^2-ac-bc\)

\(=\left(a+b\right)^2-c\left(a+b\right)\)

\(=\left(a+b\right)\left(a+b-c\right)\)

Câu 2:

\(5x^2-5y^2-10x+10y\)

\(=5\left(x-y\right)\left(x+y\right)-10\left(x-y\right)\)

\(=\left(x-y\right)\left(5x+5y-10\right)\)

\(=5\left(x-y\right)\left(x+y-2\right)\)

Câu 3:

\(3x^2-6xy+3y^2-12z^2\)

\(=3\left[\left(x-y\right)^2-4z^2\right]\)

\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)

9 tháng 10 2020

Câu 4:

\(x^4+x^3+x^2-1\)

\(=x^3\left(x+1\right)+\left(x-1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(x^3+x-1\right)\)

Câu 5:

\(x^3-3x^2+3x-1-y^3\)

\(=\left(x-1\right)^3-y^3\)

\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)

\(=\left(x-y-1\right)\left(x^2-2x+1+xy-y+y^2\right)\)

Câu 6:

\(x^4-x^2+2x-1\)

\(=x^4-\left(x-1\right)^2\)

\(=\left(x^2-x+1\right)\left(x^2+x-1\right)\)

Câu 7:

\(\left(x+y\right)^3-x^3-y^3\)

\(=\left(x+y\right)^3-\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\)

\(=3xy\left(x+y\right)\)

30 tháng 3 2022

undefinedundefined

5 tháng 9 2021

B.(nếu là +)

5 tháng 9 2021

1.

\(cos^220^o+cos^240^o+cos^250^o+cos^270^o\)

\(=cos^220^o+cos^240^o+sin^240^o+sin^220^o\)

\(=1+1=2\)

2:

a: Khi m=0 thì (1) sẽ là \(x^2-4=0\)

=>x=2 hoặc x=-2

b: x1^2+x2^2=20

=>(x1+x2)^2-2x1x2=20

=>(2m)^2-2(-m^2-4)=20

=>4m^2+2m^2+8=20

=>6m^2=12

=>m^2=2

=>\(m=\pm\sqrt{2}\)