Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Xét ΔOAB có OA=OB=AB
nên ΔOAB đều
=>\(\widehat{AOB}=60^0\)
=>Số đo cung nhỏ AB là 600
Số đo cung lớn AB là 360-60=3000
b: ΔOAB đều
mà OI là đường trung tuyến
nên \(OI=AB\cdot\dfrac{\sqrt{3}}{2}=\dfrac{R\sqrt{3}}{2}\)
c: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
=>M nằm trên đường trung trực của AB(1)
ΔOAB cân tại O
mà OI là đường trung tuyến
nên OI là đường trung trực của AB(2)
Từ (1),(2) suy ra O,I,M thẳng hàng
a: Xet ΔOAC có OA=OC và OA^2+OC^2=AC^2
nên ΔOAC vuôg cân tại O
b: \(BC=\sqrt{AB^2-AC^2}=\sqrt{4R^2-2R^2}=R\sqrt{2}\)
c: ΔOAC vuông cân tại O
=>góc BAC=45 độ
* Số đo cung nhỏ AB=góc AOB( góc ở tâm)\(\Rightarrow\) Số đo cung nhỏ AB=60 độ
* Diện ích hình quạt tròn OAB là
\(S=\frac{\pi\times R2\times n}{360}=\frac{\pi\times9\times60}{360}=\frac{3}{2}\pi\approx\frac{3}{2}\times3,14\approx4,71\)cm2
* Số đo cung lớn AB= 360 độ - 60 độ =300 độ
Độ dài cung lớn AB là:
l=3,14*3*300/180=15,7 cm
a: Xét ΔOBA vuông tại B có
\(\cos\widehat{BOA}=\dfrac{OB}{OA}=\dfrac{1}{2}\)
nên \(\widehat{BOA}=60^0\)
Xét ΔOCA vuông tại C có
\(\cos\widehat{COA}=\dfrac{OC}{OA}=\dfrac{1}{2}\)
nên \(\widehat{COA}=60^0\)
b: Số đo cung nhỏ BC là 120 độ
Số đo cung lớn BC là 240 độ
Ta có hình vẽ sau:
Vì góc nội tiếp \(\widehat{BAC}\) chắn \(\stackrel\frown{BC}\) nên \(sđ\stackrel\frown{BC}=2\cdot sđ\widehat{BAC}=2\cdot30^o=60^o\)
Vì B,C ∈ (O;R) và nên \(\left[{}\begin{matrix}OB=OC\\\widehat{BOC}=60^o\end{matrix}\right.\)
Xét ▲OBC có: \(OB=OC\)
\(\widehat{BOC}=60^o\)
⇔▲OBC đều
➤\(\widehat{CBO}=60^o\)