Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin\left(2a+b\right)=3sinb\)
\(\Leftrightarrow sin\left(a+a+b\right)=3sin\left(a+b-a\right)\)
\(\Leftrightarrow sina.cos\left(a+b\right)+cosa.sin\left(a+b\right)=3sin\left(a+b\right)cosa-3cos\left(a+b\right)sina\)
\(\Leftrightarrow4cos\left(a+b\right).sina=2sin\left(a+b\right)cosa\)
\(\Leftrightarrow\dfrac{2sina}{cosa}=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}\)
\(\Leftrightarrow2tana=tan\left(a+b\right)\)
Từ đoạn dấu tương đương thứ 2 làm sao ra được đoạn dấu tương đương thứ 3 vậy ạ?
a: TH1: m=1
Pt sẽ là -8x+1=0
hay x=1/8(nhận)
TH2: m<>1
\(\text{Δ}=\left(2m+6\right)^2-4\left(m-1\right)\left(-m+2\right)\)
\(=4m^2+24m+36+4\left(m^2-3m+2\right)\)
\(=4m^2+24m+36+4m^2-12m+8\)
\(=8m^2+12m+44\)
\(=4\left(3m^2+2m+11\right)>0\forall m\)
Do đó: PT luôn có hai nghiệm phân biệt
b: TH1: m=1
Pt sẽ là 3x+1=0
hay x=-1/3(loại)
TH2 m<>1
\(\text{Δ}=\left(3m\right)^2-4\left(m-1\right)\)
\(=9m^2-4m+4\)
\(=9\left(m^2-\dfrac{4}{9}m+\dfrac{4}{9}\right)\)
\(=9\left(m^2-2\cdot m\cdot\dfrac{2}{9}+\dfrac{4}{81}+\dfrac{32}{81}\right)\)
\(=9\left(m-\dfrac{2}{9}\right)^2+\dfrac{32}{9}>0\)
Do đó: PT luôn có hai nghiệm phânbiệt
Để pt có hai nghiệm dương phân biệt thì
\(\left\{{}\begin{matrix}\dfrac{-3m}{m-1}>0\\\dfrac{1}{m-1}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>1\\0< m< 1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
Lời giải:
Ta có:
$\sin (2a+b)=3\sin b$
$\Leftrightarrow \sin (a+b+a)=3\sin (a+b-a)$
$\Leftrightarrow \sin (a+b)\cos a+\cos (a+b)\sin a=3\sin (a+b)\cos a-3\cos (a+b)\sin a$
$\Leftrightarrow 4\cos (a+b)\sin a=2\sin (a+b)\cos a$
$\Leftrightarrow 2\cos (a+b)\sin a=\sin (a+b)\cos a$
$\Rightarrow \frac{2\sin a}{\cos a}=\frac{\sin (a+b)}{\cos (a+b)}$
$\Rightarrow 2\tan a=\tan (a+b)$
Ta có đpcm.
a/
\(\left(\frac{sin2x}{cos2x}-\frac{sinx}{cosx}\right)cos2x=\left(\frac{sin2x.cosx-cos2x.sinx}{cos2x.cosx}\right).cos2x\)
\(=\frac{sin\left(2x-x\right)}{cosx}=\frac{sinx}{cosx}=tanx\)
b/
\(2\left(1-sinx\right)\left(1+cosx\right)=2+2cosx-2sinx-2sinxcosx\)
\(=1+sin^2x+cos^2x-2sinx+2cosx-2sinx.cosx\)
\(=\left(1-sinx+cosx\right)^2\)
c/
\(1+cotx+cot^2x+cot^3x=1+cotx+cot^2x\left(1+cotx\right)\)
\(=\left(1+cotx\right)\left(1+cot^2x\right)=\left(1+\frac{cosx}{sinx}\right)\left(1+\frac{cos^2x}{sin^2x}\right)=\frac{sinx+cosx}{sin^3x}\)
d/
\(\frac{cos3x}{sinx}+\frac{sin3x}{cosx}=\frac{cos3x.cosx+sin3x.sinx}{sinx.cosx}=\frac{cos\left(3x-x\right)}{\frac{1}{2}2sinx.cosx}=\frac{2cos2x}{sin2x}=2cot2x\)
3. a, P = 2 sinx ( cos x + cos 3x + cos 5x)
= 2 sinx . [ 2.cos3x.cos (-2x) + cos 3x]
= 2 sinx . [ cos 3x ( cos 2x + 1)]
= 2 sinx cos 3x . (2 cos x - 1 + 1)
= 4 sinx . cos x .cos 3x = 2 . sin2x .cos 3x
#mã mã#
Em học lớp 9 nên giúp được câu 2 thôi nha :)
\(pt:x^2-mx+m+8=0\)
\(\Delta=\left(-m\right)^2-4\left(m+8\right)=m^2-4m+32=\left(m-2\right)^2+28>0\forall m\)
⇒ pt luôn có 2 nghiệm phân biệt
Theo hệ thức Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m+8\end{matrix}\right.\)
Để pt có 2 nghiệm phân biệt cùng âm thì:
\(\left\{{}\begin{matrix}\Delta>0\left(TM\right)\\P>0\\S< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m+8>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m>-8\end{matrix}\right.\Leftrightarrow-8< m< 0\)