\(\frac{99}{x^2-3x+13}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

\(A=\frac{99}{x^2-3x+13}=\frac{99}{x^2-3x+\frac{9}{4}+\frac{43}{4}}=\frac{99}{\left(x-\frac{3}{2}\right)^2+\frac{43}{4}}\)

Ta thấy: \(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{43}{4}\ge\frac{43}{4}\)

\(\Rightarrow\frac{1}{\left(x-\frac{3}{2}\right)^2+\frac{43}{4}}\le\frac{4}{43}\)\(\Rightarrow A\le\frac{396}{43}\)

Dấu "=" xảy ra khi \(\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x=\frac{3}{2}\)

25 tháng 2 2017

\(A=\frac{99}{x^2-3x+13}=\frac{99}{\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}\right)+\frac{43}{4}}=\frac{99}{\left(x-\frac{3}{2}\right)^2+\frac{43}{4}}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{43}{4}\ge\frac{43}{4}\Rightarrow A=\frac{99}{\left(x-\frac{3}{2}\right)^2+\frac{43}{4}}\le\frac{396}{43}\)

=>\(A_{min}=\frac{396}{43}\Leftrightarrow\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

24 tháng 2 2017

Để A lớn nhất => B bé nhất. Ta có:

B= x- 3x +13 = x^2 - 2x1,5x + 9/4 -9/4 +13 = (x-1,5)+ 43/4 

Vì (x-1,5)>= 0 với mọi x

(x-1,5)+ 43/4 >43/4 với mọi x.

=> Min B = 43/4 tại x=1,5

=> Max A = 99/(43/4) = 396/43 tại x = 1,5

30 tháng 10 2020

a) Đk: x > 0 và x khác +-1

Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)

A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)

A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)

A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)

b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)

Vậy MaxA = 1/4 <=> x = 2

17 tháng 3 2016

Xin loi ban minh viet lon roi Max=8 khi x=1

17 tháng 3 2016

Gia tri lon nhat la 2 phai ko

Max=2 khi x=1

15 tháng 3 2017

1) a) Đặt biểu thức là A

\(A=2x^2+4y^2-4xy-4x-4y+2017\)

\(A=\left(x-2y\right)^2+x^2-4x-4y+2017\)

\(A=\left(x-2y\right)^2+2\left(x-2y\right)+x^2-6x+2017\)

\(A=\left(x-2y-1\right)^2+\left(x+3\right)^2+2008\)

Vậy: MinA=2008 khi x=-3; y=-2

15 tháng 3 2017

3) a) \(A=\dfrac{1}{x^2+x+1}\)

\(B=x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\Rightarrow B\ge\dfrac{3}{4}\Rightarrow A\ge\dfrac{4}{3}\)

Vậy MinA\(\dfrac{4}{3}\) khi x=-0,5

3 tháng 3 2017

Ta có: \(\left(a-b\right)^2\ge0\forall a,b\Rightarrow a^2-2ab+b^2\ge0\forall a,b\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=1\\1\ge2ab\end{matrix}\right.\)

\(\left\{{}\begin{matrix}1\ge2ab\\\left(a+b\right)^2=a^2+2ab+b^2\end{matrix}\right.\)\(\Rightarrow a^2+2ab+b^2\le a^2+b^2+1=1+1=2\)

Đẳng thức khi:\(\left\{{}\begin{matrix}a=b\\a^2+b^2=1\end{matrix}\right.\)\(\Rightarrow a=b=\dfrac{\pm\sqrt{2}}{2}\)

4 tháng 3 2017

@Akai Haruma

lớp 8 ẫu trĩ chỉ biết thế này thôi

Cảm ơn! vì cũng nhờ đó mới biết đến cài này:

\(\left(1+1\right)\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

Tên gọi của nó là Bunyacopxki hay co_si-sa-oa- gì đó. đâu có quan trọng gì.Lớp 8 có ẫu trĩ vẫn làm được đó thôi.