Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì BH=9 , HC=16
=> BC=25
xét tam giác ABC ...., ta có
BC^2=CA^2+AB^2
hay 25^2=20^2 +Ab^2
625=400 + AB^2
AB^2=225
AB=15
xét tam giác ABH...., ta có
AB^2=AH^2 + BH^2
hay 15^2= Ah^2 + 9^2
225= AH^2 +81
AH^2= 144
AH=12
thêm kl và những chỗ còn thiếu vào nhé
Ta có: \(BC=BH+CH=9+16=25\)
Áp dụng định lý Py- ta - go vào \(\Delta ABC\), ta được:
\(AB^2=BC^2-AC^2\)
\(\Leftrightarrow AB^2=25^2-20^2\)
\(\Leftrightarrow AB^2=625-400\)
\(\Leftrightarrow AB^2=225\)
\(\Leftrightarrow AB=\sqrt{225}=15\)
Áp dụng định lý Py- ta - go vào \(\Delta AHC\), ta được:
\(AH^2=AC^2-CH^2\)
\(\Leftrightarrow AH^2=20^2-16^2\)
\(\Leftrightarrow AH^2=400-256\)
\(\Leftrightarrow AH^2=144\)
\(\Leftrightarrow AH=\sqrt{144}=12\)
Bài làm
BC=BH+HC=9+6=25(cm)BC=BH+HC=9+6=25(cm)
Áp dụng định lý Py-ta-go với tam giác ABC vuông tại A, ta có:
BC2=AB2+AC2BC2=AB2+AC2
⇒AB2=BC2+AC2=252−202⇒AB2=BC2+AC2=252−202
=625−400=225=152=625−400=225=152
Vậy AB=15cm
Áp dụng định lý Py-ta-go với tam giác AHC vuông tại H, ta có:
AH2=AC2−HC2=202−162=122AH2=AC2−HC2=202−162=122
Vậy AH= 12cm
# Học tốt #
`Answer:`
Có `BC=HB+HC=9+16=25cm`
Áp dụng định lý Pytago vào `\triangleABC` vuông tại `A=>BC^2=AB^2+AC^2(1)`
Áp dụng định lý Pytago vào `\triangleAHB` vuông tại `H=>AB^2=HB^2+AH^2(2)`
Áp dụng định lý Pytago vào `\triangleAHC` vuông tại `H=>AC^2=HC^2+AH^2(3)`
Từ `(1)(2)(3)=>AB^2+AC^2=HB^2+HC^2+AH^2+AH^2`
`=>BC^2=9^2+16^2+2AH^2`
`=>25^2=81+256+2AH^2`
`=>625 = 337 + 2AH²`
`=>2AH² = 625 - 337 = 288`
`=>AH^2=144`
`=>AH=\sqrt{144}=12cm`
a) \(BC=HC+BH=16+9=25\left(cm\right)\)
Tam giác \(AHC\) và \(AHB\) vuông tại \(H\)
\(\Rightarrow\hept{\begin{cases}AC^2=HC^2+HA^2\\AB^2=AH^2+HB^2\end{cases}}\)
\(\Rightarrow AB^2+AC^2=HC^2+AH^2+AH^2+HB^2\)
\(\Rightarrow BC^2=HC^2+2AH^2+HB^2\)
\(\Rightarrow25^2=16^2+2AH^2+9^2\)
\(\Rightarrow AH=\sqrt{\frac{25^2-16^2-9^2}{2}}=12\)
Trở lại điều kiện ban đầu: \(\hept{\begin{cases}AC^2=HC^2+AH^2\\AB^2=HB^2+HA^2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}AC=\sqrt{16^2+12^2}=20\\AB=\sqrt{9^2+12^2}=15\end{cases}}\)
b) Khi đã có số đo all cạnh thì cm rất dễ thôi
\(\hept{\begin{cases}AH^2=12^2=144\\HB.HC=16.9=144\end{cases}}\Rightarrowđpcm\)
\(\hept{\begin{cases}AB^2=15^2=225\\BC.HB=9.25=225\end{cases}}\Rightarrowđpcm\)
a ) BC=HC+BH=16+9=25 ( cm )
Tam giác: AHC và AHB vuông tại H
\(\Rightarrow\hept{\begin{cases}AC^2=HC^2+HA^2\\AB^2=AH^2+HB^2\end{cases}}\)
\(\Rightarrow AB^2+AC^2=HC^2+AH^2+AH^2=HB^2\)
\(\Rightarrow BC^2=HC^2+2AH^2+HB^2\)
\(\Rightarrow25^2=16^2+2AH^2+9^2\)
\(\Rightarrow AH=\sqrt{\frac{25^2-16^2-9^2}{2}=12}\)
Trở lại điều kiện ban đầu:\(\hept{\begin{cases}AC^2=HC^2+AH^2\\AB^2=HB^2+HA^2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}AC=\sqrt{16^2+12^2=20}\\AB=\sqrt{9^2+12^2=15}\end{cases}}\)
B ) KHI ĐÃ CÓ SỐ ĐO ALL CẠNH THÌ CM RẤT DỄ LÀM THÔI:
\(\hept{\begin{cases}AH^2=12^2=144\\HB.HC=16.9=144\end{cases}}=đpcm\)
\(\hept{\begin{cases}AB^2=15^2=225\\BC.HB=9.25=225\end{cases}}=đpcm\)
b) ΔAHB vuông tại H
Áp dụng định lý Pi-ta-go ta có: AH2+ BH2= AB2
⇒ 42 + 22 = AB2
⇒AB2 = 20
⇒AB = √20
ΔAHC vuông tại H
Áp dụng định lý Pi-ta-go, ta có: AH2 + HC2 = AC2
⇒42 +82 = AC2
⇒ AC2 = 80
⇒AC = √80
b)Vì AB>AC(√20>√80)
⇒góc C lớn hơn góc B (quan hệ giữa góc và cạnh đối diện)
A B C H
Xét \(\Delta ABH\) có \(\widehat{AHB}=90^0\)
Theo định lí Py ta go ta cs :
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AB^2=12^2+9^2\)
\(\Leftrightarrow AB^2=225\)
\(\Leftrightarrow AB=15cm\)
Xét \(\Delta AHC\) có \(\widehat{AHC}=90^0\)
Theo định lí Py ta go ta có :
\(AC^2=HC^2+AH^2\)
\(\Leftrightarrow AC^2=16^2+12^2\)
\(\Leftrightarrow AC^2=400\)
\(\Leftrightarrow AC=20cm\)
b/ Ta có :
\(HB+HC=BC\)
\(\Leftrightarrow BC=9+16=25cm\)
Lại có :
\(AB^2+AC^2=15^2+20^2=225+400=625cm\)
\(BC^2=25^2=625cm\)
\(\Leftrightarrow AB^2+AC^2=BC^2\)
Theo định lí Py ta go đảo thì tam giác ABC vuông tại A