Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) chứng minh \(\Delta ABC=\Delta ADC\)
xét 2 tam giác vuông ABC và ADC:
có AC: cạnh chung
AD=AB (gia thiết)
=> \(\Delta ABC=\Delta ADC\) (2cgv)
b) chứng minh DC//BE
xét tứ giác BEDC có 2 đường chéo BD và EC cắt nhau tại trung điểm A của mỗi đường => tứ giác BEDC là hình bình hành => DC//BE
c) chứng minh BE = 2AI
ta có BEDC là hình bình hành => BE=DC
lại có tam giác DAC vuông tại A => đường trung tuyến AI bằng một nửa cạnh huyền, tức là \(AI=\dfrac{1}{2}DC\) hay \(DC=2.AI\) hay \(BE=2.AI\)
chúc em học tốt
Cậu tự vẽ hình nhé.
a, Xét \(\Delta ABC\) vuông tại A và \(\Delta ADC\) vuông tại A có:
AB = AD(gt)
AC chung
\(\Rightarrow\Delta ABC=\Delta ADC\left(ch-cgv\right)\)
b, Ta có \(DB\perp EC\) tại \(A\)
mà \(DA=AB\left(gt\right)\)
\(AE=AC\left(gt\right)\)
\(\Rightarrow\) Tứ giác DCBE là hình thoi ( 2 đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường )
\(\Rightarrow DC//BE\) ( tính chất hình thoi )
c, Xét \(\Delta DAC\) vuông tại A có:
I là trung điểm của DC
\(\Rightarrow AI=DI=IC=\dfrac{1}{2}DC\)
\(\Rightarrow2AI=DC\)
Lại có DC = EB ( DCBE là hình thoi )
\(\Rightarrow2AI=BE\)
Sửa đề: ΔABC cân tại A
a:ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
=>AD vuông góc BC
b: Xét ΔAFI và ΔAEI có
AF=AE
góc FAI=góc EAI
AI chung
=>ΔAFI=ΔAEI
=>góc AFI=góc AEI
=>FI vuông góc AB
c: Xét ΔABC có
BE,AD là đường cao
BE cắt AD tại I
=>I là trực tâm
=>CI vuông góc AB
=>C,I,F thẳng hàng
a: Xét ΔAEB có \(\widehat{AEB}=\widehat{ABE}\)
nên ΔAEB cân tại A
hay AE=AB
Xét ΔCAB và ΔCED có
\(\widehat{CAB}=\widehat{CED}\)(hai góc so le trong, DE//AB)
\(\widehat{ACB}=\widehat{ECD}\)(hai góc đối đỉnh)
Do đó: ΔCAB đồng dạng với ΔCED
=>\(\dfrac{CA}{CE}=\dfrac{AB}{ED}=\dfrac{CB}{CD}\)
=>\(\dfrac{12}{CE}=\dfrac{18}{ED}=\dfrac{9}{3}=3\)
=>\(CE=\dfrac{12}{3}=4\left(cm\right);ED=\dfrac{18}{3}=6\left(cm\right)\)
a) Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{BD}{DC}=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{BD}{2}=\dfrac{CD}{3}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{2}=\dfrac{CD}{3}=\dfrac{BD+CD}{2+3}=\dfrac{BC}{5}\)
\(\Leftrightarrow\dfrac{BD}{BC}=\dfrac{2}{5}\)
Kẻ DK//BE(K∈EC)
Xét ΔADK có
I∈AD(gt)
E∈AK(gt)
IE//DK(gt)
Do đó: \(\dfrac{AE}{EK}=\dfrac{AI}{ID}\)(Định lí Ta lét)
hay \(\dfrac{AE}{EK}=2\)
Xét ΔBEC có
D∈BC(gt)
K∈EC(gt)
DK//BE(gt)
Do đó: \(\dfrac{EK}{EC}=\dfrac{BD}{BC}\)(Hệ quả của Định lí Ta lét)
hay \(\dfrac{EK}{EC}=\dfrac{2}{5}\)
Ta có: \(\dfrac{AE}{EK}\cdot\dfrac{EK}{EC}=\dfrac{AE}{EC}\)
\(\Leftrightarrow\dfrac{AE}{EC}=2\cdot\dfrac{2}{5}=\dfrac{4}{5}\)
b) Ta có: \(\dfrac{AE}{EC}=\dfrac{4}{5}\)(cmt)
nên \(\dfrac{AE}{4}=\dfrac{EC}{5}\)
mà AE+EC=AC(E nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AE}{4}=\dfrac{EC}{5}=\dfrac{AE+EC}{4+5}=\dfrac{18}{9}=2\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AE}{4}=2\\\dfrac{EC}{5}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AE=2\cdot4=8\left(cm\right)\\EC=2\cdot5=10\left(cm\right)\end{matrix}\right.\)
Vậy: AE=8cm; EC=10cm
-Qua D kẻ đường thẳng song song BI cắt AC tại F.
-Xét △ABC: AD là tia p/g của \(\widehat{BAC}\) (gt)
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}\) (định lí đường phân giác trong tam giác)
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{10}{35}=\dfrac{2}{7}\)
-Có: \(AE=\dfrac{3}{4}AD\) (gt) ; \(AE+ED=AD\)
\(\Rightarrow\dfrac{3}{4}AD+ED=AD\)
\(\Rightarrow ED=\dfrac{1}{4}AD\)
\(\Rightarrow\dfrac{AE}{ED}=\dfrac{\dfrac{3}{4}AD}{\dfrac{1}{4}AD}=3\)
-Xét △AIF: EI//DF.
\(\Rightarrow\dfrac{AI}{IF}=\dfrac{AE}{ED}=3\) (định lí Ta-let) (1) \(\Rightarrow IF=\dfrac{1}{3}AI\)
-Xét △IBC: DF//BI.
\(\Rightarrow\dfrac{IF}{CF}=\dfrac{BD}{CD}=\dfrac{2}{7}\) (định lí Ta-let) (2)
-Từ (1), (2) suy ra:
\(\dfrac{AI}{IF}.\dfrac{IF}{CF}=3.\dfrac{2}{7}=\dfrac{6}{7}\)
\(\Rightarrow\dfrac{AI}{CF}=\dfrac{6}{7}\)
\(\Rightarrow CF=\dfrac{7}{6}AI\)
*\(AI+IF+CF=AC\)
\(\Rightarrow AI+\dfrac{7}{6}AI+\dfrac{1}{3}AI=35\)
\(\Rightarrow\dfrac{5}{2}AI=35\)
\(\Rightarrow AI=14\left(cm\right)\)