K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2022

-Qua D kẻ đường thẳng song song BI cắt AC tại F.

-Xét △ABC: AD là tia p/g của \(\widehat{BAC}\) (gt)

\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}\) (định lí đường phân giác trong tam giác)

\(\Rightarrow\dfrac{BD}{CD}=\dfrac{10}{35}=\dfrac{2}{7}\)

-Có: \(AE=\dfrac{3}{4}AD\) (gt) ; \(AE+ED=AD\)

\(\Rightarrow\dfrac{3}{4}AD+ED=AD\)

\(\Rightarrow ED=\dfrac{1}{4}AD\)

\(\Rightarrow\dfrac{AE}{ED}=\dfrac{\dfrac{3}{4}AD}{\dfrac{1}{4}AD}=3\)

-Xét △AIF: EI//DF.

\(\Rightarrow\dfrac{AI}{IF}=\dfrac{AE}{ED}=3\) (định lí Ta-let) (1) \(\Rightarrow IF=\dfrac{1}{3}AI\)

-Xét △IBC: DF//BI.

\(\Rightarrow\dfrac{IF}{CF}=\dfrac{BD}{CD}=\dfrac{2}{7}\) (định lí Ta-let) (2)

-Từ (1), (2) suy ra:

\(\dfrac{AI}{IF}.\dfrac{IF}{CF}=3.\dfrac{2}{7}=\dfrac{6}{7}\)

\(\Rightarrow\dfrac{AI}{CF}=\dfrac{6}{7}\)

\(\Rightarrow CF=\dfrac{7}{6}AI\)

*\(AI+IF+CF=AC\)

\(\Rightarrow AI+\dfrac{7}{6}AI+\dfrac{1}{3}AI=35\)

\(\Rightarrow\dfrac{5}{2}AI=35\)

\(\Rightarrow AI=14\left(cm\right)\)

 

 

 

8 tháng 6 2023

A B C D E I

a) chứng minh \(\Delta ABC=\Delta ADC\)

xét 2 tam giác vuông ABC và ADC:

có AC: cạnh chung

AD=AB (gia thiết) 

=> \(\Delta ABC=\Delta ADC\) (2cgv)

 

b) chứng minh DC//BE

xét tứ giác BEDC có 2 đường chéo BD và EC cắt nhau tại trung điểm A của mỗi đường => tứ giác BEDC là hình bình hành => DC//BE

 

c) chứng minh BE = 2AI

ta có BEDC là hình bình hành => BE=DC

lại có tam giác DAC vuông tại A => đường trung tuyến AI bằng một nửa cạnh huyền, tức là \(AI=\dfrac{1}{2}DC\) hay \(DC=2.AI\) hay \(BE=2.AI\)

chúc em học tốt

8 tháng 6 2023

Cậu tự vẽ hình nhé.

a,  Xét \(\Delta ABC\) vuông tại A và \(\Delta ADC\) vuông tại A có:

                       AB = AD(gt)

                       AC chung 

          \(\Rightarrow\Delta ABC=\Delta ADC\left(ch-cgv\right)\)

b, Ta có \(DB\perp EC\) tại \(A\)

 mà \(DA=AB\left(gt\right)\)

        \(AE=AC\left(gt\right)\)

\(\Rightarrow\) Tứ giác DCBE là hình thoi ( 2 đường chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường )

\(\Rightarrow DC//BE\) ( tính chất hình thoi )

c,   Xét \(\Delta DAC\) vuông tại A có:

      I là trung điểm của DC 

 \(\Rightarrow AI=DI=IC=\dfrac{1}{2}DC\)

\(\Rightarrow2AI=DC\) 

Lại có DC = EB ( DCBE là hình thoi )

\(\Rightarrow2AI=BE\)

Sửa đề: ΔABC cân tại A

a:ΔABC cân tại A

mà AD là đường phân giác

nên AD là đường cao

=>AD vuông góc BC

b: Xét ΔAFI và ΔAEI có

AF=AE
góc FAI=góc EAI

AI chung

=>ΔAFI=ΔAEI

=>góc AFI=góc AEI

=>FI vuông góc AB

c: Xét ΔABC có

BE,AD là đường cao

BE cắt AD tại I

=>I là trực tâm

=>CI vuông góc AB

=>C,I,F thẳng hàng

16 tháng 11 2021

a: Xét ΔAEB có \(\widehat{AEB}=\widehat{ABE}\)

nên ΔAEB cân tại A

hay AE=AB

Xét ΔCAB và ΔCED có

\(\widehat{CAB}=\widehat{CED}\)(hai góc so le trong, DE//AB)

\(\widehat{ACB}=\widehat{ECD}\)(hai góc đối đỉnh)

Do đó: ΔCAB đồng dạng với ΔCED

=>\(\dfrac{CA}{CE}=\dfrac{AB}{ED}=\dfrac{CB}{CD}\)

=>\(\dfrac{12}{CE}=\dfrac{18}{ED}=\dfrac{9}{3}=3\)

=>\(CE=\dfrac{12}{3}=4\left(cm\right);ED=\dfrac{18}{3}=6\left(cm\right)\)

a) Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{BD}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)

\(\Leftrightarrow\dfrac{BD}{DC}=\dfrac{2}{3}\)

\(\Leftrightarrow\dfrac{BD}{2}=\dfrac{CD}{3}\)

mà BD+CD=BC(D nằm giữa B và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{2}=\dfrac{CD}{3}=\dfrac{BD+CD}{2+3}=\dfrac{BC}{5}\)

\(\Leftrightarrow\dfrac{BD}{BC}=\dfrac{2}{5}\)

Kẻ DK//BE(K∈EC)

Xét ΔADK có 

I∈AD(gt)

E∈AK(gt)

IE//DK(gt)

Do đó: \(\dfrac{AE}{EK}=\dfrac{AI}{ID}\)(Định lí Ta lét)

hay \(\dfrac{AE}{EK}=2\)

Xét ΔBEC có 

D∈BC(gt)

K∈EC(gt)

DK//BE(gt)

Do đó: \(\dfrac{EK}{EC}=\dfrac{BD}{BC}\)(Hệ quả của Định lí Ta lét)

hay \(\dfrac{EK}{EC}=\dfrac{2}{5}\)

Ta có: \(\dfrac{AE}{EK}\cdot\dfrac{EK}{EC}=\dfrac{AE}{EC}\)

\(\Leftrightarrow\dfrac{AE}{EC}=2\cdot\dfrac{2}{5}=\dfrac{4}{5}\)

b) Ta có: \(\dfrac{AE}{EC}=\dfrac{4}{5}\)(cmt)

nên \(\dfrac{AE}{4}=\dfrac{EC}{5}\)

mà AE+EC=AC(E nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AE}{4}=\dfrac{EC}{5}=\dfrac{AE+EC}{4+5}=\dfrac{18}{9}=2\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AE}{4}=2\\\dfrac{EC}{5}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AE=2\cdot4=8\left(cm\right)\\EC=2\cdot5=10\left(cm\right)\end{matrix}\right.\)

Vậy: AE=8cm; EC=10cm