Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\overrightarrow{n_{\left(P1\right)}}=\left(1;-1;1\right)\\\overrightarrow{n_{\left(P2\right)}}=\left(3;2;-12\right)\end{matrix}\right.\) \(\Rightarrow\)\(\left[\overrightarrow{n_{\left(P1\right)}};\overrightarrow{n_{\left(P2\right)}}\right]=\left(10;15;5\right)=5\left(2;3;1\right)\)
Chọn \(\overrightarrow{n_{\left(p\right)}}=\left(2;3;1\right)\) là 1 vtpt của (P)
Phương trình (P): \(2x+3y+z=0\)
Câu 2:
\(\left\{{}\begin{matrix}\overrightarrow{u_d}=\left(2;1;1\right)\\\overrightarrow{u_{d'}}=\left(1;-2;1\right)\end{matrix}\right.\) \(\Rightarrow\left[\overrightarrow{u_d};\overrightarrow{u_{d'}}\right]=\left(3;-1;-5\right)\)
\(\Rightarrow\) Chọn \(\overrightarrow{n_{\alpha}}=\left(3;-1;-5\right)\) là một vtpt của \(\left(\alpha\right)\)
Phương trình \(\left(\alpha\right)\):
\(3\left(x-0\right)-1\left(y-1\right)-5\left(z-2\right)=0\)
\(\Leftrightarrow3x-y-5z+11=0\)
1. \(f\left(x\right)=e^{x^3-3x+3}\) trên đoạn \(\left[0;2\right]\)
Ta có : \(f'\left(x\right)=\left(3x^2-3\right)e^{x^3-3x+3}=0\Leftrightarrow3x^2-3=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\notin\left[0;2\right]\\x=1\in\left[0;2\right]\end{array}\right.\)
mà : \(\begin{cases}f\left(0\right)=e^3\\f\left(1\right)=e\\f\left(2\right)=e^5\end{cases}\) \(\Rightarrow\begin{cases}Max_{x\in\left[0;2\right]}f\left(x\right)=e^5;x=1\\Min_{x\in\left[0;2\right]}f\left(x\right)=e;x=2\end{cases}\)
2. \(f\left(x\right)=\ln\left(x^2-x+1\right)\) trên đoạn \(\left[1;3\right]\)
Mà \(\begin{cases}f\left(1\right)=0\\f\left(3\right)=\ln7\end{cases}\) \(\Leftrightarrow\begin{cases}Max_{x\in\left[1;3\right]}f\left(x\right)=\ln7;x=3\\Min_{x\in\left[1;3\right]}f\left(x\right)=0;x=1\end{cases}\)
Tìm tất cả các hàm số f: R -> R thoả mãn điều kiện: f((x - y)2) = x2 - 2yf(x) + ((f(y)2); ∀x, y ∈ R.
Gọi P(x,y) là phép thế của phương trình hàm đề bài.
P(x,x) cho ta: f(0)=x2-2xf(x)+f2(x). (Ở đây, f2(x) là f(x)f(x) chứ không phải là f(f(x))).
Đến đây cho x=0 ta suy ra: f(0)=f2(0). Ta được f(0)=0 hoặc f(0)=1.
Trường hợp 1: f(0)=0 suy ra: f2(x)-2xf(x)+x2=0 với mọi x thực. Suy ra: (f(x)-x)2=0 với mọi x nên f(x)=x với mọi x.
Thử lại thấy thỏa mãn.
Trường hợp 2: f(0)=1 tương tự trường hợp 1, ta suy ra với mọi x thì f(x)=x-1 hoặc f(x)=x+1.
P(x,0) suy ra: f(x2)=x2+1. Do đó với mọi x không âm thì f(x)=x+1.
P(0,y) suy ra: f(y2)=f2(y)-2y suy ra: (y+1)2=f2(y) với mọi y thực.
Nếu tồn tại a thực khác 0 sao cho: f(a)=a-1. Thay y=a ta được: (a+1)2=f2(a)=(a-1)2 suy ra:
a2+2a+1=a2-2a+1 suy ra: a=0(vô lí). Do đó: f(x)=x+1 với mọi x thực.
Thử lại không thỏa mãn. Vậy f(x)=x với mọi x.
Điểm cực tiểu của hàm số y = -x3 + 3x +4 là
A. x = -1
B. x = 1
C. x = -3
Câu 2. Cho hàm số f(x) = x2lnx. Tính f'(e)
A. 3e
B. 2e
C. e
D. 2 + e