K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2023

Áp dụng công thức tỉ lệ phân số ta có : 

\(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{ac}{bd}\)

Ta có : \(\dfrac{a}{b}=\dfrac{b}{c}\Rightarrow a.c=b^2\)

Khi đó ta có : \(\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a^2+ac}{ac+c^2}=\dfrac{a.\left(a+c\right)}{c.\left(a+c\right)}=\dfrac{a}{c}\)

\(\dfrac{a}{b}=\dfrac{b}{c}\Rightarrow\dfrac{a^2}{b^2}=\dfrac{b^2}{c^2}=\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{a}{c}\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a^2}{b^2}=\dfrac{b^2}{c^2}=\dfrac{a^2+b^2}{b^2+c^2}\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)

\(vậy\dfrac{a^2+b^2}{b^2+c^2}=\dfrac{a}{c}\)

 

 

8 tháng 1 2021

Có \(\dfrac{a}{b}=\dfrac{c}{d}< =>\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)

<=> \(\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\left(\dfrac{a+b}{c+d}\right)^2\)

<=> \(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\left(\dfrac{a+b}{c+d}\right)^2\)(1)

Có \(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\)

Áp dụng DTSBN ta có: 

\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\)(2)

Từ (1) (2) => đpcm.

9 tháng 1 2021

cảm ơn nha

 

17 tháng 3 2023

tịt

 

11 tháng 12 2023

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2\)

\(=\left(\dfrac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2=\left(\dfrac{b}{d}\right)^2\)(1)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}\)

\(=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) suy ra \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)

25 tháng 7 2023

Ta đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\) 

=> \(a=bk\) 

       \(c=dk\) 

Ta có: 

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\left(\dfrac{b\left(k+1\right)}{d\left(k+1\right)}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2\times k^2+b^2}{d^2\times k^2+d^2}=\dfrac{b^2\times\left(k^2+1\right)}{d^2\times\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)

=> \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\) 

=> đpcm

25 tháng 7 2023

Cảm ơn bạn nha. Mình tick đúng cho bạn rồi đó.

a: \(A=\left(5xy-2xy+4xy\right)+3x-2y-y^2\)

\(=7xy+3x-2y-y^2\)

b: \(B=\left(\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2-\dfrac{1}{2}ab^2\right)+\left(\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b\right)\)

\(=\dfrac{-7}{8}ab^2+\dfrac{3}{8}a^2b\)

c: \(C=\left(2a^2b+5a^2b\right)+\left(-8b^2-3b^2\right)+\left(5c^2+4c^2\right)\)

\(=7a^2b-11b^2+9c^2\)

23 tháng 5 2022

\(A=5xy-y^2-2xy+4xy+3x-2y\)

\(A=-y^2+7xy+3x-2y\)

\(B=\dfrac{1}{2}ab^2-\dfrac{7}{8}ab^2+\dfrac{3}{4}a^2b-\dfrac{3}{8}a^2b-\dfrac{1}{2}ab^2\)

\(B=\dfrac{3}{8}a^2b-\dfrac{7}{8}ab^2\)

\(C=2a^2b-8b^2+5a^2b+5c^2-3b^2+4c^2\)

\(C=7a^2b-11b^2+9c^2\)